Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
Más filtros

Intervalo de año de publicación
1.
Development ; 148(4)2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33234713

RESUMEN

The size, shape and insertion sites of muscles enable them to carry out their precise functions in moving and supporting the skeleton. Although forelimb anatomy is well described, much less is known about the embryonic events that ensure individual muscles reach their mature form. A description of human forelimb muscle development is needed to understand the events that control normal muscle formation and to identify what events are disrupted in congenital abnormalities in which muscles fail to form normally. We provide a new, 4D anatomical characterisation of the developing human upper limb muscles between Carnegie stages 18 and 22 using optical projection tomography. We show that muscles develop in a progressive wave, from proximal to distal and from superficial to deep. We show that some muscle bundles undergo splitting events to form individual muscles, whereas others translocate to reach their correct position within the forelimb. Finally, we show that palmaris longus fails to form from early in development. Our study reveals the timings of, and suggests mechanisms for, crucial events that enable nascent muscle bundles to reach their mature form and position within the human forelimb.


Asunto(s)
Desarrollo Embrionario , Miembro Anterior/embriología , Músculo Esquelético/embriología , Extremidad Superior/embriología , Animales , Biomarcadores , Miembro Anterior/anatomía & histología , Miembro Anterior/metabolismo , Histocitoquímica , Humanos , Inmunohistoquímica , Músculo Esquelético/anatomía & histología , Músculo Esquelético/metabolismo , Transporte de Proteínas , Extremidad Superior/anatomía & histología
2.
Development ; 147(21)2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665241

RESUMEN

Disruption of the minor spliceosome due to mutations in RNU4ATAC is linked to primordial dwarfism in microcephalic osteodysplastic primordial dwarfism type 1, Roifman syndrome, and Lowry-Wood syndrome. Similarly, primordial dwarfism in domesticated animals is linked to positive selection in minor spliceosome components. Despite being vital for limb development and size regulation, its role remains unexplored. Here, we disrupt minor spliceosome function in the developing mouse limb by ablating one of its essential components, U11 small nuclear RNA, which resulted in micromelia. Notably, earlier loss of U11 corresponded to increased severity. We find that limb size is reduced owing to elevated minor intron retention in minor intron-containing genes that regulate cell cycle. As a result, limb progenitor cells experience delayed prometaphase-to-metaphase transition and prolonged S-phase. Moreover, we observed death of rapidly dividing, distally located progenitors. Despite cell cycle defects and cell death, the spatial expression of key limb patterning genes was maintained. Overall, we show that the minor spliceosome is required for limb development via size control potentially shared in disease and domestication.


Asunto(s)
Enanismo/genética , Extremidades/embriología , Retardo del Crecimiento Fetal/genética , Microcefalia/genética , Osteocondrodisplasias/genética , ARN Nuclear Pequeño/metabolismo , Animales , Tipificación del Cuerpo/genética , Ciclo Celular/genética , Femenino , Miembro Anterior/embriología , Miembro Anterior/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/embriología , Miembro Posterior/ultraestructura , Intrones/genética , Masculino , Ratones Endogámicos C57BL , Mutación/genética , ARN Nuclear Pequeño/genética , Células Madre/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(13): 7296-7304, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170021

RESUMEN

Hox genes are indispensable for the proper patterning of the skeletal morphology of the axial and appendicular skeleton during embryonic development. Recently, it has been demonstrated that Hox expression continues from embryonic stages through postnatal and adult stages exclusively in a skeletal stem cell population. However, whether Hox genes continue to function after development has not been rigorously investigated. We generated a Hoxd11 conditional allele and induced genetic deletion at adult stages to show that Hox11 genes play critical roles in skeletal homeostasis of the forelimb zeugopod (radius and ulna). Conditional loss of Hox11 function at adult stages leads to replacement of normal lamellar bone with an abnormal woven bone-like matrix of highly disorganized collagen fibers. Examining the lineage from the Hox-expressing mutant cells demonstrates no loss of stem cell population. Differentiation in the osteoblast lineage initiates with Runx2 expression, which is observed similarly in mutants and controls. With loss of Hox11 function, however, osteoblasts fail to mature, with no progression to osteopontin or osteocalcin expression. Osteocyte-like cells become embedded within the abnormal bony matrix, but they completely lack dendrites, as well as the characteristic lacuno-canalicular network, and do not express SOST. Together, our studies show that Hox11 genes continuously function in the adult skeleton in a region-specific manner by regulating differentiation of Hox-expressing skeletal stem cells into the osteolineage.


Asunto(s)
Huesos/embriología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Animales , Huesos/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Femenino , Miembro Anterior/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Genes Homeobox/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Esqueleto/embriología , Factores de Transcripción/metabolismo
4.
Dev Biol ; 470: 136-146, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217406

RESUMEN

The development of joints in the mammalian skeleton depends on the precise regulation of multiple interacting signaling pathways including the bone morphogenetic protein (BMP) pathway, a key regulator of joint development, digit patterning, skeletal growth, and chondrogenesis. Mutations in the BMP receptor ACVR1 cause the rare genetic disease fibrodysplasia ossificans progressiva (FOP) in which extensive and progressive extra-skeletal bone forms in soft connective tissues after birth. These mutations, which enhance BMP-pSmad1/5 pathway activity to induce ectopic bone, also affect skeletal development. FOP can be diagnosed at birth by symmetric, characteristic malformations of the great toes (first digits) that are associated with decreased joint mobility, shortened digit length, and absent, fused, and/or malformed phalanges. To elucidate the role of ACVR1-mediated BMP signaling in digit skeletal development, we used an Acvr1R206H/+;Prrx1-Cre knock-in mouse model that mimics the first digit phenotype of human FOP. We have determined that the effects of increased Acvr1-mediated signaling by the Acvr1R206H mutation are not limited to the first digit but alter BMP signaling, Gdf5+ joint progenitor cell localization, and joint development in a manner that differently affects individual digits during embryogenesis. The Acvr1R206H mutation leads to delayed and disrupted joint specification and cleavage in the digits and alters the development of cartilage and endochondral ossification at sites of joint morphogenesis. These findings demonstrate an important role for ACVR1-mediated BMP signaling in the regulation of joint and skeletal formation, show a direct link between failure to restrict BMP signaling in the digit joint interzone and failure of joint cleavage at the presumptive interzone, and implicate impaired, digit-specific joint development as the proximal cause of digit malformation in FOP.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Articulaciones/embriología , Miositis Osificante/embriología , Miositis Osificante/metabolismo , Dedos del Pie/embriología , Animales , Tipificación del Cuerpo , Condrogénesis , Modelos Animales de Enfermedad , Miembro Anterior/anomalías , Miembro Anterior/embriología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Placa de Crecimiento/embriología , Miembro Posterior/anomalías , Miembro Posterior/embriología , Articulaciones/anomalías , Articulaciones/metabolismo , Ratones , Osteogénesis , Transducción de Señal , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Células Madre/fisiología , Dedos del Pie/anomalías
5.
Development ; 146(20)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575609

RESUMEN

We provide the first detailed ontogenetic analysis of human limb muscles using whole-mount immunostaining. We compare our observations with the few earlier studies that have focused on the development of these muscles, and with data available on limb evolution, variations and pathologies. Our study confirms the transient presence of several atavistic muscles - present in our ancestors but normally absent from the adult human - during normal embryonic human development, and reveals the existence of others not previously described in human embryos. These atavistic muscles are found both as rare variations in the adult population and as anomalies in human congenital malformations, reinforcing the idea that such variations/anomalies can be related to delayed or arrested development. We further show that there is a striking difference in the developmental order of muscle appearance in the upper versus lower limbs, reinforcing the idea that the similarity between various distal upper versus lower limb muscles of tetrapod adults may be derived.


Asunto(s)
Evolución Biológica , Extremidades/embriología , Músculo Esquelético/embriología , Animales , Miembro Anterior/embriología , Humanos , Extremidad Inferior/embriología , Filogenia
6.
Development ; 145(19)2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30190278

RESUMEN

Suppression of Meis genes in the distal limb bud is required for proximal-distal (PD) specification of the forelimb. Polycomb group (PcG) factors play a role in downregulation of retinoic acid (RA)-related signals in the distal forelimb bud, causing Meis repression. It is, however, not known whether downregulation of RA-related signals and PcG-mediated proximal gene repression are functionally linked. Here, we reveal that PcG factors and RA-related signals antagonize each other to polarize Meis2 expression along the PD axis in mouse. Supported by mathematical modeling and simulation, we propose that PcG factors are required to adjust the threshold for RA-related signaling to regulate Meis2 expression. Finally, we show that a variant Polycomb repressive complex 1 (PRC1), incorporating PCGF3 and PCGF5, represses Meis2 expression in the distal limb bud. Taken together, we reveal a previously unknown link between PcG proteins and downregulation of RA-related signals to mediate the phase transition of Meis2 transcriptional status during forelimb patterning.


Asunto(s)
Miembro Anterior/embriología , Proteínas de Homeodominio/metabolismo , Esbozos de los Miembros/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Tretinoina/metabolismo , Animales , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Ratones , Transducción de Señal
7.
Development ; 145(1)2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222391

RESUMEN

The role of basal suppression of the sonic hedgehog (Shh) pathway and its interaction with Indian hedgehog (Ihh) signaling during limb/skeletal morphogenesis is not well understood. The orphan G protein-coupled receptor Gpr161 localizes to primary cilia and functions as a negative regulator of Shh signaling by promoting Gli transcriptional repressor versus activator formation. Here, we show that forelimb buds are not formed in Gpr161 knockout mouse embryos despite establishment of prospective limb fields. Limb-specific deletion of Gpr161 resulted in prematurely expanded Shh signaling and ectopic Shh-dependent patterning defects resulting in polysyndactyly. In addition, endochondral bone formation in forearms, including formation of both trabecular bone and bone collar was prevented. Endochondral bone formation defects resulted from accumulation of proliferating round/periarticular-like chondrocytes, lack of differentiation into columnar chondrocytes, and corresponding absence of Ihh signaling. Gpr161 deficiency in craniofacial mesenchyme also prevented intramembranous bone formation in calvarium. Defects in limb patterning, endochondral and intramembranous skeletal morphogenesis were suppressed in the absence of cilia. Overall, Gpr161 promotes forelimb formation, regulates limb patterning, prevents periarticular chondrocyte proliferation and drives osteoblastogenesis in intramembranous bones in a cilium-dependent manner.


Asunto(s)
Tipificación del Cuerpo/fisiología , Miembro Anterior/embriología , Osteogénesis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Cilios/genética , Cilios/metabolismo , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Cráneo/embriología
8.
J Anat ; 239(3): 693-703, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33870497

RESUMEN

Reduced limbs and limblessness have evolved independently in many lizard clades. Scincidae exhibit a wide range of limb-reduced morphologies, but only some species have been used to study the embryology of limb reduction (e.g., digit reduction in Chalcides and limb reduction in Scelotes). The genus Brachymeles, a Southeast Asian clade of skinks, includes species with a range of limb morphologies, from pentadactyl to functionally and structurally limbless species. Adults of the small, snake-like species Brachymeles lukbani show no sign of external limbs in the adult except for small depressions where they might be expected to occur. Here, we show that embryos of B. lukbani in early stages of development, on the other hand, show a truncated but well-developed limb with a stylopod and a zeugopod, but no signs of an autopod. As development proceeds, the limb's small size persists even while the embryo elongates. These observations are made based on external morphology. We used florescent whole-mount immunofluorescence to visualize the morphology of skeletal elements and muscles within the embryonic limb of B. lukabni. Early stages have a humerus and separated ulna and radius cartilages; associated with these structures are dorsal and ventral muscle masses as those found in the embryos of other limbed species. While the limb remains small, the pectoral girdle grows in proportion to the rest of the body, with well-developed skeletal elements and their associated muscles. In later stages of development, we find the small limb is still present under the skin, but there are few indications of its presence, save for the morphology of the scale covering it. By use of CT scanning, we find that the adult morphology consists of a well-developed pectoral girdle, small humerus, extremely reduced ulna and radius, and well-developed limb musculature connected to the pectoral girdle. These muscles form in association with a developing limb during embryonic stages, a hint that "limbless" lizards that possess these muscles may have or have had at least transient developing limbs, as we find in B. lukbani. Overall, this newly observed pattern of ontogenetic reduction leads to an externally limbless adult in which a limb rudiment is hidden and covered under the trunk skin, a situation called cryptomelia. The results of this work add to our growing understanding of clade-specific patterns of limb reduction and the convergent evolution of limbless phenotypes through different developmental processes.


Asunto(s)
Desarrollo Embrionario/fisiología , Miembro Anterior/anatomía & histología , Miembro Posterior/anatomía & histología , Lagartos/anatomía & histología , Animales , Miembro Anterior/embriología , Miembro Posterior/embriología , Filogenia
9.
PLoS Biol ; 16(11): e3000004, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30475793

RESUMEN

In all tetrapods examined thus far, the development and patterning of limbs require the activation of gene members of the HoxD cluster. In mammals, they are regulated by a complex bimodal process that controls first the proximal patterning and then the distal structure. During the shift from the former to the latter regulation, this bimodal regulatory mechanism allows the production of a domain with low Hoxd gene expression, at which both telomeric (T-DOM) and centromeric regulatory domains (C-DOM) are silent. These cells generate the future wrist and ankle articulations. We analyzed the implementation of this regulatory mechanism in chicken, i.e., in an animal for which large morphological differences exist between fore- and hindlimbs. We report that although this bimodal regulation is globally conserved between the mouse and the chick, some important modifications evolved at least between these two model systems, in particular regarding the activity of specific enhancers, the width of the TAD boundary separating the two regulations, and the comparison between the forelimb versus hindlimb regulatory controls. At least one aspect of these regulations seems to be more conserved between chick and bats than with mouse, which may relate to the extent to which forelimbs and hindlimbs of these various animals differ in their morphologies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Genes Homeobox/fisiología , Animales , Embrión de Pollo , Pollos/genética , Elementos de Facilitación Genéticos/genética , Extremidades/embriología , Extremidades/fisiología , Miembro Anterior/embriología , Miembro Posterior/embriología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones/embriología , Ratones/genética , Ratones Endogámicos C57BL , Organogénesis , Transcripción Genética/genética
10.
Dev Biol ; 454(2): 128-144, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247188

RESUMEN

The tetrapod limb is a stunning example of evolutionary diversity, with dramatic variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species. Despite this variation, highly conserved genetic and developmental programs underlie limb development and identity in all tetrapods, raising the question of how limb diversification is generated from a conserved toolkit. In some breeds of domestic pigeon, shifts in the expression of two conserved limb identity transcription factors, PITX1 and TBX5, are associated with the formation of feathered HLs with partial FL identity. To determine how modulation of PITX1 and TBX5 expression affects downstream gene expression, we compared the transcriptomes of embryonic limb buds from pigeons with scaled and feathered HLs. We identified a set of differentially expressed genes enriched for genes encoding transcription factors, extracellular matrix proteins, and components of developmental signaling pathways with important roles in limb development. A subset of the genes that distinguish scaled and feathered HLs are also differentially expressed between FL and scaled HL buds in pigeons, pinpointing a set of gene expression changes downstream of PITX1 and TBX5 in the partial transformation from HL to FL identity. We extended our analyses by comparing pigeon limb bud transcriptomes to chicken, anole lizard, and mammalian datasets to identify deeply conserved PITX1- and TBX5-responsive components of the limb identity program. Our analyses reveal a suite of predominantly low-level gene expression changes that are conserved across amniotes to regulate the identity of morphologically distinct limbs.


Asunto(s)
Tipificación del Cuerpo/genética , Pie/embriología , Miembro Posterior/embriología , Animales , Columbidae/genética , Extremidades/embriología , Plumas , Pie/fisiología , Miembro Anterior/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Esbozos de los Miembros/metabolismo , Morfogénesis/genética , Organogénesis/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
11.
Development ; 144(18): 3325-3335, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28807899

RESUMEN

Forelimbs (FLs) and hindlimbs (HLs) develop complex musculoskeletal structures that rely on the deployment of a conserved developmental program. Pitx1, a transcription factor gene with expression restricted to HL and absent from FL, plays an important role in generating HL features. The genomic mechanisms by which Pitx1 effects HL identity remain poorly understood. Here, we use expression profiling and analysis of direct Pitx1 targets to characterize the HL- and FL-restricted genetic programs in mouse and situate the Pitx1-dependent gene network within the context of limb-specific gene regulation. We show that Pitx1 is a crucial component of a narrow network of HL-restricted regulators, acting on a developmental program that is shared between FL and HL. Pitx1 targets sites that are in a similar chromatin state in FL and HL and controls expression of patterning genes as well as the chondrogenic program, consistent with impaired chondrogenesis in Pitx1-/- HL. These findings support a model in which multifactorial actions of a limited number of HL regulators redirect the generic limb development program in order to generate the unique structural features of the limb.


Asunto(s)
Miembro Posterior/embriología , Miembro Posterior/metabolismo , Organogénesis , Factores de Transcripción Paired Box/metabolismo , Animales , Secuencia de Bases , Condrogénesis/genética , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Miembro Anterior/embriología , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Sitios Genéticos , Genoma , Proteínas de Homeodominio/metabolismo , Ratones , Organogénesis/genética , Factor de Transcripción SOX9/metabolismo
12.
Dev Biol ; 435(2): 122-129, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29352963

RESUMEN

The extracellular matrix (ECM) plays a crucial role in embryogenesis, serving both as a substrate to which cells attach and as an active regulator of cell behavior. However, little is known about the spatiotemporal expression patterns and 3D structure of ECM proteins during embryonic development. The lack of suitable methods to visualize the embryonic ECM is largely responsible for this gap, posing a major technical challenge for biologists and tissue engineers. Here, we describe a method of viewing the 3D organization of the ECM using a polyacrylamide-based hydrogel to provide a 3D framework within developing murine embryos. After removal of soluble proteins using sodium dodecyl sulfate, confocal microscopy was used to visualize the 3D distribution of independent ECM networks in multiple developing tissues, including the forelimb, eye, and spinal cord. Comparative analysis of E12.5 and E14.5 autopods revealed proteoglycan-rich fibrils maintain connections between the epidermis and the underlying tendon and cartilage, indicating a role for the ECM during musculoskeletal assembly and demonstrating that our method can be a powerful tool for defining the spatiotemporal distribution of the ECM during embryogenesis.


Asunto(s)
Desarrollo Embrionario , Matriz Extracelular/ultraestructura , Microscopía Confocal/métodos , Adhesión del Tejido/métodos , Resinas Acrílicas , Animales , Detergentes/farmacología , Epidermis/ultraestructura , Proteínas de la Matriz Extracelular/efectos de los fármacos , Proteínas de la Matriz Extracelular/ultraestructura , Colorantes Fluorescentes , Miembro Anterior/embriología , Miembro Anterior/ultraestructura , Formaldehído , Hidrogeles , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Polímeros , Proteoglicanos/análisis , Dodecil Sulfato de Sodio/farmacología , Manejo de Especímenes , Coloración y Etiquetado/métodos , Tendones/embriología , Tendones/ultraestructura , Fijación del Tejido
13.
Dev Biol ; 439(2): 65-68, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29705333

RESUMEN

Forelimbs (FLs) and hindlimbs (HLs) develop under the instructive and integrated guidance of signaling centers and transcription factor (TF) action. The development of structures specific to each limb type depends on the limb-specific modulation of these integrated components. Pitx1 is a transcription factor gene expressed in HL, absent in FL, and required for HL-specific patterning and development, in particular for formation of anterior HL skeletal elements. Pitx1 achieves this function by direct TF action on the core limb program, which is largely shared between FL and HL. Shh signaling plays a crucial role in anterior-posterior (AP) patterning in both FL and HL. The present work assessed the relationship between Shh signaling and Pitx1 action for AP patterning. We found that reducing the gene dosage of Shh in the context of the Pitx1-/- HL decreases the severity of the Pitx1-/- phenotype, in particular, the loss of anterior limb structures and the shortening of femur length. However, this did not rescue HL-specific patterning features. Thus, Pitx1 action integrates Shh signaling but not for limb-type-specific patterning.


Asunto(s)
Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiología , Factores de Transcripción Paired Box/metabolismo , Animales , Tipificación del Cuerpo/genética , Extremidades/embriología , Miembro Anterior/embriología , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/metabolismo , Miembro Posterior/embriología , Miembro Posterior/metabolismo , Proteínas de Homeodominio/metabolismo , Esbozos de los Miembros/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/fisiología , Fenotipo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
14.
Dev Genes Evol ; 229(5-6): 147-159, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31214772

RESUMEN

Our studies conducted on reptilian limb muscle development revealed, for the first time, early forelimb muscle differentiation at the morphological and molecular level. Sand lizard skeletal muscle differentiation in the early forelimb bud was investigated by light, confocal, and transmission electron microscopy as well as western blot. The early forelimb bud, filled with mesenchymal cells, is surrounded by monolayer epithelium cells. The immunocytochemical analysis revealed the presence of Pax3- and Lbx-positive cells in the vicinity of the ventro-lateral lip (VLL) of the dermomyotome, suggesting that VLL is the source of limb muscle progenitor cells. Furthermore, Pax3- and Lbx-positive cells were observed in the dorsal and ventral myogenic pools of the forelimb bud. Skeletal muscle development in the early limb bud is asynchronous, which is manifested by the presence of myogenic cells in different stages of differentiation: multinucleated myotubes with well-developed contractile apparatus, myoblasts, and mitotically active premyoblasts. The western blot analysis revealed the presence of MyoD and Myf5 proteins in all investigated developmental stages. The MyoD western blot analysis showed two bands corresponding to monomeric (mMyoD) and dimeric (dMyoD) fractions. Two separate bands were also detected in the case of Myf5. The observed bands were related to non-phosphorylated (Myf5) and phosphorylated (pMyf5) fractions of Myf5. Our investigations on sand lizard forelimb myogenesis showed that the pattern of muscle differentiation in the early forelimb bud shares many features with rodents and chicks.


Asunto(s)
Lagartos/embriología , Desarrollo de Músculos , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Miembro Anterior/embriología , Esbozos de los Miembros/citología , Esbozos de los Miembros/crecimiento & desarrollo , Lagartos/genética , Microscopía Confocal , Proteínas Musculares/análisis , Proteínas Musculares/genética , Músculo Esquelético/citología , Músculo Esquelético/embriología
15.
Development ; 143(5): 872-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26839363

RESUMEN

Pax3 and Foxc2 have been shown genetically to mutually repress each other in the mouse somite. Perturbation of this balance in multipotent cells of the dermomyotome influences cell fate; upregulation of Foxc2 favours a vascular fate, whereas higher levels of Pax3 lead to myogenesis. Foxc1 has overlapping functions with Foxc2. In Foxc1/2 double-mutant embryos, somitogenesis is severely affected, precluding analysis of somite derivatives. We have adopted a conditional approach whereby mutations in Foxc1 and Foxc2 genes were targeted to Pax3-expressing cells. Inclusion of a conditional reporter allele in the crosses made it possible to follow cells that had expressed Pax3. At the forelimb level, endothelial and myogenic cells migrate from adjacent somites into the limb bud. This population of endothelial cells is compromised in the double mutant, whereas excessive production of myogenic cells is observed in the trunk. However, strikingly, myogenic progenitors fail to enter the limbs, leading to the absence of skeletal muscle. Pax3-positive migratory myogenic progenitors, marked by expression of Lbx1, are specified in the somite at forelimb level, but endothelial progenitors are absent. The myogenic progenitors do not die, but differentiate prematurely adjacent to the somite. We conclude that the small proportion of somite-derived endothelial cells in the limb is required for the migration of myogenic limb progenitors.


Asunto(s)
Células Endoteliales/metabolismo , Miembro Anterior/embriología , Factores de Transcripción Forkhead/genética , Desarrollo de Músculos/fisiología , Factores de Transcripción Paired Box/metabolismo , Somitos/metabolismo , Animales , Movimiento Celular , Separación Celular , Cruzamientos Genéticos , Femenino , Citometría de Flujo , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Hibridación in Situ , Esbozos de los Miembros/embriología , Masculino , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Mutación , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Fenotipo
16.
Development ; 143(24): 4608-4619, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27827819

RESUMEN

During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4 Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis.


Asunto(s)
Cartílago/citología , Condrogénesis/genética , Células Madre Embrionarias/metabolismo , Miembro Anterior/embriología , Esbozos de los Miembros/embriología , Proteína-Arginina N-Metiltransferasas/genética , Animales , Apoptosis/genética , Proteína Morfogenética Ósea 4/metabolismo , Células Cultivadas , Células Madre Embrionarias/citología , Miembro Anterior/anomalías , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética
17.
Development ; 143(2): 276-85, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26674308

RESUMEN

Polycomb group (PcG) proteins play a pivotal role in silencing developmental genes and help to maintain various stem and precursor cells and regulate their differentiation. PcG factors also regulate dynamic and complex regional specification, particularly in mammals, but this activity is mechanistically not well understood. In this study, we focused on proximal-distal (PD) patterning of the mouse forelimb bud to elucidate how PcG factors contribute to a regional specification process that depends on developmental signals. Depletion of the RING1 proteins RING1A (RING1) and RING1B (RNF2), which are essential components of Polycomb repressive complex 1 (PRC1), led to severe defects in forelimb formation along the PD axis. We show that preferential defects in early distal specification in Ring1A/B-deficient forelimb buds accompany failures in the repression of proximal signal circuitry bound by RING1B, including Meis1/2, and the activation of distal signal circuitry in the prospective distal region. Additional deletion of Meis2 induced partial restoration of the distal gene expression and limb formation seen in the Ring1A/B-deficient mice, suggesting a crucial role for RING1-dependent repression of Meis2 and likely also Meis1 for distal specification. We suggest that the RING1-MEIS1/2 axis is regulated by early PD signals and contributes to the initiation or maintenance of the distal signal circuitry.


Asunto(s)
Miembro Anterior/embriología , Proteínas de Homeodominio/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Inmunoprecipitación de Cromatina , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Hibridación in Situ , Masculino , Ratones , Ratones Mutantes , Complejo Represivo Polycomb 1/genética , Embarazo , Ácido Retinoico 4-Hidroxilasa , Tretinoina/farmacología , Ubiquitina-Proteína Ligasas/genética
18.
Nature ; 500(7463): 445-8, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23831646

RESUMEN

Evolution involves interplay between natural selection and developmental constraints. This is seen, for example, when digits are lost from the limbs during evolution. Extant archosaurs (crocodiles and birds) show several instances of digit loss under different selective regimes, and show limbs with one, two, three, four or the ancestral number of five digits. The 'lost' digits sometimes persist for millions of years as developmental vestiges. Here we examine digit loss in the Nile crocodile and five birds, using markers of three successive stages of digit development. In two independent lineages under different selection, wing digit I and all its markers disappear. In contrast, hindlimb digit V persists in all species sampled, both as cartilage, and as Sox9- expressing precartilage domains, 250 million years after the adult digit disappeared. There is therefore a mismatch between evolution of the embryonic and adult phenotypes. All limbs, regardless of digit number, showed similar expression of sonic hedgehog (Shh). Even in the one-fingered emu wing, expression of posterior genes Hoxd11 and Hoxd12 was conserved, whereas expression of anterior genes Gli3 and Alx4 was not. We suggest that the persistence of digit V in the embryo may reflect constraints, particularly the conserved posterior gene networks associated with the zone of polarizing activity (ZPA). The more rapid and complete disappearance of digit I may reflect its ZPA-independent specification, and hence, weaker developmental constraints. Interacting with these constraints are selection pressures for limb functions such as flying and perching. This model may help to explain the diverse patterns of digit loss in tetrapods. Our study may also help to understand how selection on adults leads to changes in development.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/embriología , Evolución Biológica , Aves/anatomía & histología , Aves/embriología , Extremidades/anatomía & histología , Selección Genética , Animales , Dromaiidae/anatomía & histología , Dromaiidae/embriología , Extremidades/embriología , Miembro Anterior/anatomía & histología , Miembro Anterior/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Miembro Posterior/anatomía & histología , Miembro Posterior/embriología , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Fenotipo , Filogenia , Alas de Animales/anatomía & histología , Alas de Animales/embriología
19.
BMC Biol ; 16(1): 101, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30223853

RESUMEN

BACKGROUND: Global analyses of gene expression during development reveal specific transcription patterns associated with the emergence of various cell types, tissues, and organs. These heterogeneous patterns are instrumental to ensure the proper formation of the different parts of our body, as shown by the phenotypic effects generated by functional genetic approaches. However, variations at the cellular level can be observed within each structure or organ. In the developing mammalian limbs, expression of Hox genes from the HoxD cluster is differentially controlled in space and time, in cells that will pattern the digits and the forearms. While the Hoxd genes broadly share a common regulatory landscape and large-scale analyses have suggested a homogenous Hox gene transcriptional program, it has not previously been clear whether Hoxd genes are expressed together at the same levels in the same cells. RESULTS: We report a high degree of heterogeneity in the expression of the Hoxd11 and Hoxd13 genes. We analyzed single-limb bud cell transcriptomes and show that Hox genes are expressed in specific combinations that appear to match particular cell types. In cells giving rise to digits, we find that the expression of the five relevant Hoxd genes (Hoxd9 to Hoxd13) is unbalanced, despite their control by known global enhancers. We also report that specific combinatorial expression follows a pseudo-time sequence, which is established based on the transcriptional diversity of limb progenitors. CONCLUSIONS: Our observations reveal the existence of distinct combinations of Hoxd genes at the single-cell level during limb development. In addition, we document that the increasing combinatorial expression of Hoxd genes in this developing structure is associated with specific transcriptional signatures and that these signatures illustrate a temporal progression in the differentiation of these cells.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Organogénesis , Transcripción Genética , Animales , Miembro Anterior/embriología , Miembro Posterior/embriología , Ratones
20.
Semin Cell Dev Biol ; 49: 102-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26643124

RESUMEN

The limbs are a significant evolutionary innovation that enabled vertebrates to diversify and colonise new environments. Tetrapods have two pairs of limbs, forelimbs in the upper body and hindlimbs in the lower body. The morphologies of the forelimbs and hindlimbs are distinct, reflecting their specific locomotory functions although they share many common signalling networks that regulate their development. The paired appendages in vertebrates form at fixed positions along the rostral-caudal axis and this occurs as a consequence of earlier subdivision of the lateral plate mesoderm (LPM) into regions with distinct limb forming potential. In this review, we discuss the molecular mechanisms that confer a broad region of the flank with limb-forming potential and its subsequent refinement into distinct forelimb-forming, hindlimb-forming and interlimb territories.


Asunto(s)
Miembro Anterior/embriología , Miembro Posterior/embriología , Mesodermo/embriología , Animales , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Humanos , Esbozos de los Miembros/embriología , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA