Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chembiochem ; 23(14): e202200157, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35476889

RESUMEN

Pyridoxal-5'-phosphate (PLP)-dependent enzymes have garnered interest for their ability to synthesize non-standard amino acids (nsAAs). One such class of enzymes, O-acetylserine sulfhydrylases (OASSs), catalyzes the final step in the biosynthesis of l-cysteine. Here, we examine the ß-substitution capability of the OASS from Citrullus vulgaris (CvOASS), a putative l-mimosine synthase. While the previously reported mimosine synthase activity was not reproducible in our hands, we successfully identified non-native reactivity with a variety of O-nucleophiles. Optimization of reaction conditions for carboxylate and phenolate substrates led to distinct conditions that were leveraged for the preparative-scale synthesis of nsAAs. We further show this enzyme is capable of C-C bond formation through a ß-alkylation reaction with an activated nitroalkane. To facilitate understanding of this enzyme, we determined the crystal structure of the enzyme bound to PLP as the internal aldimine at 1.55 Å, revealing key features of the active site and providing information that may guide subsequent development of CvOASS as a practical biocatalyst.


Asunto(s)
Citrullus , Citrullus/metabolismo , Cisteína Sintasa/metabolismo , Mimosina , Fosfato de Piridoxal/metabolismo , Serina/análogos & derivados
2.
Molecules ; 27(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35335240

RESUMEN

Helminth infections continue to be a neglected global threat in tropical regions, and there have been growing cases of anthelmintic resistance reported towards the existing anthelmintic drugs. Thus, the search for a novel anthelmintic agent has been increasing, especially those derived from plants. Leucaena leucocephala (LL) is a leguminous plant that is known to have several pharmacological activities, including anthelmintic activity. It is widely known to contain a toxic compound called mimosine, which we believed could be a potential lead candidate that could exert a potent anthelmintic effect. Hence, this study aimed to validate the presence of mimosine in LL extract and to investigate the anthelmintic effect of LL extract and mimosine on head thrashing, egg-laying, and pharyngeal pumping activities using the animal model Caenorhabditis elegans (C. elegans). Mimosine content in LL extract was confirmed through an HPLC analysis of spiking LL extract with different mimosine concentrations, whereby an increasing trend in peak heights was observed at a retention time of 0.9 min. LL extract and mimosine caused a significant dose-dependent increase in the percentage of worm mortality, which produced LC50s of 73 mg/mL and 6.39 mg/mL, respectively. Exposure of C. elegans to different concentrations of LL extract and mimosine significantly decreased the head thrashing, egg-laying, and mean pump amplitude of pharyngeal pumping activity. We speculated that these behavioral changes are due to the inhibitory effect of LL extract and mimosine on an L-type calcium channel called EGL-19. Our findings provide evidential support for the potential of LL extract and its active compound, mimosine, as novel anthelmintic candidates. However, the underlying mechanism of the anthelmintic action has yet to be elucidated.


Asunto(s)
Antihelmínticos , Fabaceae , Animales , Antihelmínticos/farmacología , Caenorhabditis elegans , Mimosina/farmacología , Extractos Vegetales/farmacología
3.
World J Microbiol Biotechnol ; 38(10): 172, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35908235

RESUMEN

Leucaena leucocephala growing in the tropics and subtropics serves as potential forage for livestock because its foliage is rich in protein, fiber, and minerals. However, its use for livestock feed has been hindered by toxic nonprotein amino acid mimosine. Therefore, it is necessary to develop a method to reduce or eliminate mimosine from foliage. A previous study found that the fermentation of L. leucocephala foliage reduced the mimosine content and prompted the authors to isolate potent mimosine degrading microorganisms and characterize the mimosinase for the complete elimination of mimosine in the L. leucocephala foliage. The soil screening of the L. leucocephala tree surroundings led to the isolation of Arthrobacter sp. Ryudai-S1, which can degrade and assimilate mimosine as a nitrogen and carbon source. Mimosinase in this strain was found to be thermostable and showed strong activity. Docking model's inspection and the interaction energy calculation between mimosine-pyridoxal-5'-phosphate (PLP) complex and the active site of this enzyme identified 11 important amino acid residues that stabilized the binding. Of these amino acid residues, mutation experiment suggested that Tyr-263' and Phe-34 stabilizes the substrate binding and play a critical role in guiding the substrate to proper positions to accomplish high catalytic efficacy and selectivity. These observations suggest that Arthrobacter sp. Ryudai-S1 could be potentially useful for the development of L. leucocephala feed with reduced mimosine content.


Asunto(s)
Arthrobacter , Fabaceae , Arthrobacter/genética , Dominio Catalítico , Fabaceae/genética , Hidrolasas/metabolismo , Mimosina/química , Mimosina/metabolismo , Fosfato de Piridoxal/metabolismo
4.
Trop Anim Health Prod ; 54(5): 330, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36173493

RESUMEN

In this study, the in vitro apparent rumen degradability of organic matter (ARDOM) and plant secondary metabolites (ARDPSM) of three tropical legumes (Mucuna pruriens, Canavalia ensiformis, and Leucaena leucocephala) were assessed. For this, 3 experiments were set up, i.e., single end-point incubations (24 h) with ruminal inoculum from either Belgian or Cuban sheep, as well as kinetic assessments (0 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, and 24 h) inoculum from Belgian sheep. L-mimosine, L-canavanine, Concanavalin A (Con A), and trypsin inhibitor (TI) were the plant secondary metabolites (PSM) targeted in this study. In all three experiments, both beans, as well as forage/bean meals of M. pruriens and C. ensiformis and their PSM, were extensively degraded during 24 h incubation, irrespective of the inoculum source (0.44 to 0.70 and 0.43 to 0.78 g/g of organic matter (OM) for ARDOM, respectively, and > 0.80 g/g for L-canavanine, > 0.76 TIU/TIU for TI, and > 0.95 g/g for Con A, for both legumes). Forage meal of L. leucocephala was considerably less degraded, with apparent ruminal degradabilities of 0.20 g/g OM and 0.35 g/g OM after 24 h incubation with Belgian or Cuban sheep inoculum, respectively. This could - at least partially - be related to L-mimosine, present in L. leucocephala, which was hardly degraded in the Belgian incubation, while a more extensive ruminal breakdown was observed under the Cuban conditions (0.05 g/g PSM vs. 0.78 g/g PSM, respectively). The negative effect of L-mimosine on OM degradability was supported in an additional in vitro experiment with straw and inoculum from Belgian sheep, as ruminal degradation of straw was 31% lower when pure L-mimosine was supplemented.


Asunto(s)
Fabaceae , Rumen , Alimentación Animal/análisis , Animales , Canavanina/metabolismo , Concanavalina A/metabolismo , Digestión , Fabaceae/metabolismo , Fermentación , Mimosina/metabolismo , Rumen/metabolismo , Ovinos , Inhibidores de Tripsina/metabolismo , Verduras/metabolismo
5.
Invest New Drugs ; 39(4): 971-986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33624234

RESUMEN

Melanoma is an aggressive and highly metastatic type of skin cancer where the design of new therapies is of utmost importance for the clinical management of the disease. Thus, we have aimed to investigate the mode of action by which a novel methylated analogue of L-Mimosine (e.g., L-SK-4) exerts its therapeutic potency in an in vitro model of malignant melanoma. Cytotoxicity was assessed by the Alamar Blue assay, oxidative stress by commercially available kits, ROS generation, caspase 3/7 activation and mitochondrial membrane depolarisation by flow cytometry, expression of apoptosis-related proteins by western immunoblotting and profiling of lipid biosynthesis by a metabolomic approach. Overall, higher levels of ROS, sphingolipids and apoptosis were induced by L-SK-4 suggesting that the compound's therapeutic potency is mediated through elevated ROS levels which promote the upregulation of sphingolipid (ceramide) biosynthesis thus leading to the activation of both extrinsic and intrinsic apoptosis, in an experimental model of malignant melanoma.


Asunto(s)
Antineoplásicos/farmacología , Melanoma/tratamiento farmacológico , Mimosina/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ceramidas/metabolismo , Ceramidas/farmacología , Citometría de Flujo , Humanos , Melanoma/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Metilación , Ratones , Mimosina/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/patología
6.
Plant Mol Biol ; 102(4-5): 431-445, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31907707

RESUMEN

KEY MESSAGE: Iron deficiency conditions as well as iron supplied as a Fe(III)-mimosine complex induced a number of strategy I and strategy II genes for iron uptake in leucaena. Leucaena leucocephala (leucaena) is a tree-legume that can grow in alkaline soils, where metal-cofactors like Fe(III) are sparingly available. Mimosine, a known chelator of Fe(III), may facilitate Fe(III) uptake in leucaena by serving as a phytosiderophore. To test if mimosine can serve as a phytosiderophore, three sets of experiments were carried out. First, the binding properties and solubility of metal-mimosine complexes were assessed through spectrophotometry. Second, to study mimosine uptake in plants, pole bean, common bean, and tomato plants were supplied with mimosine alone and metal-mimosine complexes. Third, the expression of strategy I (S1) and strategy II (S2) genes for iron uptake from the soil was studied in leucaena plants exposed to different Fe(III) complexes. The results of this study show that (i) mimosine has high binding affinity for metallic cations at alkaline pH, Fe(III)-mimosine complexes are water soluble at alkaline pH, and that mimosine can bind soil iron under alkaline pH; (ii) pole bean, common bean, and tomato plants can uptake mimosine and transport it throughout the plant; and (iii) a number of S1 and S2 genes were upregulated in leucaena under iron-deficiency condition or when Fe(III) was supplied as a Fe(III)-mimosine complex. These findings suggest that leucaena may utilize both S1 and S2 strategies for iron uptake; and mimosine may play an important role in both strategies.


Asunto(s)
Fabaceae/efectos de los fármacos , Fabaceae/metabolismo , Mimosina/farmacocinética , Transporte Biológico , Tampones (Química) , Cationes , Compuestos Férricos/metabolismo , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Hierro/metabolismo , Metales/metabolismo , Nitrógeno , Phaseolus/efectos de los fármacos , Phaseolus/metabolismo , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Unión Proteica , Sideróforos/metabolismo , Suelo , Solanum/efectos de los fármacos , Solanum/metabolismo , Solubilidad
7.
Invest New Drugs ; 38(3): 621-633, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31240512

RESUMEN

The anticancer activity of a series of novel synthesized, hydroxypyridone-based metal chelators (analogues of L-mimosine) was evaluated in an in vitro model of melanoma consisting of malignant melanoma (A375), non-melanoma epidermoid carcinoma (A431) and immortalized non-malignant keratinocyte (HaCaT) cells. More specifically, we have demonstrated that the L-enantiomer of a methylated analogue of L-mimosine (compound 22) can exert a potent anticancer effect in A375 cells when compared to either A431 or HaCaT cells. Moreover, we have demonstrated that this analogue has the ability to i) promote increased generation of reactive oxygen species (ROS), ii) activate both intrinsic and extrinsic apoptosis and iii) induce perturbations in cell cycle growth arrest. Our data highlights the potential of compound 22 to act as a promising therapeutic agent against an in vitro model of human malignant melanoma.


Asunto(s)
Antineoplásicos/farmacología , Melanoma/tratamiento farmacológico , Mimosina/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Melanoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
J Plant Res ; 133(1): 95-108, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31828681

RESUMEN

Cysteine biosynthesis is directed by the successive commitments of serine acetyltransferase, and O-acetylserine (thiol) lyase (OASTL) compounds, which subsequently frame the decameric cysteine synthase complex. The isoforms of OASTL are found in three compartments of the cell: the cytosol, plastid, and mitochondria. In this investigation, we first isolated putative chloroplastic OASTL (Ch-OASTL) from Leucaena leucocephala, and the Ch-OASTL was then expressed in BL21-competent Escherichia coli. The putative Ch-OASTL cDNA clone had 1,543 base pairs with 391 amino acids in its open reading frame and a molecular weight of 41.54 kDa. The purified protein product exhibited cysteine synthesis ability, but not mimosine synthesis activity. However, they both make the common α-aminoacrylate intermediate in their first half reaction scheme with the conventional substrate O-acetyl serine (OAS). Hence, we considered putative Ch-OASTL a cysteine-specific enzyme. Kinetic studies demonstrated that the optimum pH for cysteine synthesis was 7.0, and the optimum temperature was 40 °C. In the cysteine synthesis assay, the Km and kcat values were 838 ± 26 µM and 72.83 s-1 for OAS, respectively, and 60 ± 2 µM and 2.43 s-1 for Na2S, respectively. We can infer that putative Ch-OASTL regulatory role is considered a sensor for sulfur constraint conditions, and it acts as a forerunner of various metabolic compound molecules.


Asunto(s)
Cloroplastos , Clonación Molecular , Cisteína Sintasa , Cinética , Mimosina
9.
J Periodontal Res ; 54(5): 489-498, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30891777

RESUMEN

BACKGROUND AND OBJECTIVE: A key factor in the modulation of angiogenesis as well as in bone resorption is angiopoietin-like 4. However, the role of angiopoietin-like 4 in periodontal tissue is unknown. Here, we hypothesized that hypoxia and the hypoxia mimetic agent L-mimosine can induce the production of angiopoietin-like 4 in periodontal fibroblasts. METHODS: Human periodontal ligament fibroblasts (PDLF) were cultured in monolayer and spheroid cultures. The cultures were incubated in the presence of hypoxia or L-mimosine. Angiopoietin-like 4 mRNA and protein levels were measured by qPCR and ELISA, respectively. Also, the impact of Lipopolysaccharides of E. coli and P. gingivalis, interleukin (IL)-1ß and tumor necrosis factor (TNF)α was evaluated. Furthermore, we tested dependency on hypoxia-inducible factor (HIF)-1 activity by Western blotting for HIF-1 and inhibitor studies with echinomycin. Potential autocrine effects were assessed by exposure of PDLF to recombinant angiopoietin-like 4 in full length, C-terminal and N-terminal fragments. The impact on viability, DNA synthesis, alkaline phosphatase, and matrix mineralization was evaluated. RESULTS: Both hypoxia and L-mimosine elevated angiopoietin-like 4 mRNA and protein levels in monolayer cultures of PDLF. HIF-1 was elevated after both hypoxia and L-mimosine treatment. LPS, IL-1ß, and TNFα did not modulate angiopoietin-like 4 levels significantly. Addition of echinomycin in the cultures inhibited the production of angiopoietin-like 4. In spheroid cultures of PDLF, the increase did not reach the level of significance at mRNA and protein levels. Angiopoietin-like 4 in full length, C-terminal, and N-terminal fragments did not modulate viability, DNA synthesis, alkaline phosphatase, and matrix mineralization. CONCLUSION: Overall, we found that hypoxia and the hypoxia mimetic agent L-mimosine can stimulate angiopoietin-like 4 production in monolayer cultures of PDLF. This increase depends on HIF-1 activity. Future studies will reveal how the modulation of angiopoietin-like 4 in the periodontium contributes to periodontal disease and regeneration.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina , Escherichia coli , Hipoxia , Mimosina , Proteína 4 Similar a la Angiopoyetina/metabolismo , Angiopoyetinas , Células Cultivadas , Fibroblastos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mimosina/farmacología , Ligamento Periodontal/metabolismo
10.
J Plant Res ; 132(2): 263-271, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30637553

RESUMEN

Seed priming is a treatment that controls seed water content to partially activate germination processes such as metabolism but prevents full germination of the seeds. The treatment is well known to enhance seed performance, including germination, but sometimes reduces seed storability or longevity as a side effect. Toward developing a novel priming technique that can maintain seed longevity for a longer time period, chemicals that suppress the seed deterioration under a controlled condition were screened from 80 known biologically active compounds contained in the RIKEN NPDepo authentic library using Arabidopsis thaliana seeds. Seeds primed with mimosine, a cell cycle inhibitor, retained higher survival rate after a controlled deterioration treatment compared to seeds primed without the chemical. In addition, other cell cycle inhibitors such as aphidicolin, hydroxyurea and oryzalin had similar effects on the seed storability after priming. Our results suggest that progression of the cell cycle during priming is an important checkpoint that determines the storability of seeds after the treatment.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Mimosina/farmacología , Semillas/efectos de los fármacos , Arabidopsis
11.
Eur J Oral Sci ; 126(4): 263-271, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30006964

RESUMEN

Core circadian clock genes set the pace for a wide range of physiological functions, including regeneration. The role of these genes and their regulation in the dental pulp, in particular under hypoxic conditions, is unknown. Here we investigated if core clock genes are expressed in human dental pulp-derived cells (DPC) and if their expression is modulated by the hypoxia mimetic agent, L-mimosine (L-MIM), hypoxia or echinomycin. Dental pulp-derived cells in monolayers and spheroids were treated with L-MIM, hypoxia or echinomycin. mRNA levels of the core circadian clock genes were analysed using quantitative PCR (qPCR) and their protein levels were analysed by western blot. All core clock genes and proteins were produced in DPC monolayer and spheroid cultures. The expression of cryptochrome circadian regulators and period circadian regulators was reduced by L-MIM, hypoxia and echinomycin at mRNA, but not at protein levels. Time course experiments indicated that modulations were based on alterations in overall mRNA levels of core circadian clock genes. Our results suggest a potential role of the core circadian clock in the response of dental pulp to hypoxia. Future studies need to consider that regulation of the core circadian clock at mRNA levels might not be paralleled by modulation of protein levels.


Asunto(s)
Relojes Circadianos/genética , Pulpa Dental/citología , Equinomicina/farmacología , Regulación de la Expresión Génica , Hipoxia , Mimosina/farmacología , Western Blotting , Técnicas de Cultivo de Célula , Electroforesis en Gel de Poliacrilamida , Humanos , Técnicas In Vitro , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo
12.
J Plant Res ; 131(2): 319-329, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29181648

RESUMEN

In the cysteine and mimosine biosynthesis process, O-acetyl-L-serine (OAS) is the common substrate. In the presence of O-acetylserine (thiol) lyase (OASTL, cysteine synthase) the reaction of OAS with sulfide produces cysteine, while with 3-hydroxy-4-pyridone (3H4P) produces mimosine. The enzyme OASTL can either catalyze Cys synthesis or both Cys and mimosine. A cDNA for cytosolic OASTL was cloned from M. pudica for the first time containing 1,410 bp nucleotides. The purified protein product from overexpressed bacterial cells produced Cys only, but not mimosine, indicating it is Cys specific. Kinetic studies revealed that pH and temperature optima for Cys production were 6.5 and 50 °C, respectively. The measured Km, Kcat, and Kcat Km-1 values were 159 ± 21 µM, 33.56 s-1, and 211.07 mM-1s-1 for OAS and 252 ± 25 µM, 32.99 s-1, and 130.91 mM-1s-1 for Na2S according to the in vitro Cys assay. The Cy-OASTL of Mimosa pudica is specific to Cys production, although it contains sensory roles in sulfur assimilation and the reduction network in the intracellular environment of M. pudica.


Asunto(s)
Cisteína Sintasa/genética , Mimosa/genética , Mimosina/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Cisteína Sintasa/química , Cisteína Sintasa/metabolismo , Citosol/metabolismo , Mimosa/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia
13.
Int Endod J ; 51 Suppl 2: e146-e156, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28656722

RESUMEN

AIM: To evaluate the impact of hypoxia and hypoxia mimetic agents (HMA) on the formation and activity of spheroids by dental pulp cells (DPC). METHODOLOGY: DPC on agarose-coated plates were treated with hypoxia and the HMA dimethyloxallyl glycine (DMOG), desferrioxamine (DFO) and L-mimosine (L-MIM). Images of spheroids were taken directly after seeding and at 6 h and 24 h. Spheroid sizes were quantified by area measurement with ImageJ software. Viability was assessed with Live-Dead staining, MTT and resazurin-based toxicity assay. Production of VEGF, IL-8 and SDF-1 was evaluated using immunoassays. Data were analysed using Kruskal-Wallis test and post hoc Mann-Whitney U-test. RESULTS: DPC formed spheroids in the presence of hypoxia, HMA and combined treatment with hypoxia and HMA. No pronounced difference in spheroid size was found in the groups treated with hypoxia, DMOG, DFO, L-MIM and the combination of hypoxia and the HMA relative to their normoxic controls (P > 0.05). Spheroids appeared vital in Live-Dead and MTT staining and the resazurin-based toxicity assay. Evaluation of protein production with immunoassays revealed significantly enhanced levels of VEGF and IL-8 (P < 0.05), but there was no significant effect on SDF-1 production (P > 0.05). Treatment with a combination of hypoxia and HMA did not further boost VEGF and IL-8 production (P > 0.05). CONCLUSIONS: Pre-conditioning with hypoxia and HMA increased the pro-angiogenic capacity of spheroids whilst not interfering with their formation. Pre-clinical studies will reveal whether pre-conditioning of spheroids with hypoxia and HMA can effectively improve the efficiency of cell transplantation approaches for regenerative endodontics.


Asunto(s)
Pulpa Dental/citología , Esferoides Celulares/citología , Quimiocina CXCL12/metabolismo , Deferoxamina/farmacología , Pulpa Dental/efectos de los fármacos , Pulpa Dental/fisiología , Ensayo de Inmunoadsorción Enzimática , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología , Interleucina-8/metabolismo , Mimosina/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
BMC Oral Health ; 18(1): 36, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523112

RESUMEN

BACKGROUND: To understand the responses of the dental pulp to hypoxia is of high relevance for regenerative endodontics and dental traumatology. Here, we aimed to reveal the effects of hypoxia and the hypoxia mimetic agent L-mimosine (L-MIM) on the production of sclerostin (SOST) and dickkopf-1 (DKK-1) in human dental pulp-derived cells (DPC). METHODS: DPC in monolayer, spheroid and tooth slice cultures were treated with L-MIM or hypoxia. Resazurin-based toxicity and MTT assays were performed to determine cell viability. mRNA and protein levels of SOST and DKK-1 were measured with quantitative reverse transcription PCR and ELISA, respectively. To validate the hypoxia-like response, SDF-1, VEGF and IL-8 were assessed. In addition Western blots for HIF-1α, HIF-2α and HIF-3α were done. RESULTS: Cells were vital upon treatment procedures and showed increased levels of HIF-1α, and HIF-2α. In monolayer cultures, mRNA levels of SOST and DKK-1 were downregulated by L-MIM and hypoxia, respectively. A significant downregulation of SOST by hypoxia was found at the protein level compared to untreated cells while the effect on DKK-1 and the impact of L-MIM on SOST and DKK-1 did not reach the level of significance at the protein level. In spheroid cultures, mRNA levels of SOST and DKK-1 were downregulated by L-MIM. A significant downregulation of DKK-1 upon hypoxia treatment was found at the protein level while the impact of hypoxia on SOST and the effect of L-MIM on SOST and DKK-1 did not reach the level of significance. SOST and DKK-1 were also produced in tooth slices, but no pronounced modulation by L-MIM or hypoxia was found. Evaluation of SDF-1, VEGF and IL-8 showed a hypoxia-like response in the culture models. CONCLUSIONS: There is no pronounced influence of hypoxia and L-MIM on DPC viability, SOST and DKK-1 protein production. However, the specific response depends on the culture model and the level of evaluation (mRNA or protein). These results deepen our understanding about the role of hypoxia and the potential impacts of hypoxia-based strategies on dental pulp.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Pulpa Dental/citología , Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mimosina/farmacología , Proteínas Adaptadoras Transductoras de Señales , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL12/metabolismo , Pulpa Dental/efectos de los fármacos , Pulpa Dental/metabolismo , Ensayo de Inmunoadsorción Enzimática , Marcadores Genéticos , Humanos , Interleucina-8/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
BMC Oral Health ; 17(1): 87, 2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28545523

RESUMEN

BACKGROUND: Angiogenin is a key molecule in the healing process which has been successfully applied in the field of regenerative medicine. The role of angiogenin in dental pulp regeneration is unclear. Here we aimed to reveal the impact of the hypoxia mimetic agent L-mimosine (L-MIM) and hypoxia on angiogenin in the dental pulp. METHODS: Human dental pulp-derived cells (DPC) were cultured in monolayer and spheroid cultures and treated with L-MIM or hypoxia. In addition, tooth slice organ cultures were applied to mimic the pulp-dentin complex. We measured angiogenin mRNA and protein levels using qPCR and ELISA, respectively. Inhibitor studies with echinomycin were performed to reveal the role of hypoxia-inducible factor (HIF)-1 signaling. RESULTS: Both, L-MIM and hypoxia increased the production of angiogenin at the protein level in monolayer cultures of DPC, while the increase at the mRNA level did not reach the level of significance. The increase of angiogenin in response to treatment with L-MIM or hypoxia was reduced by echinomycin. In spheroid cultures, L-MIM increased angiogenin at protein levels while the effect of hypoxia was not significant. Angiogenin was also expressed and released in tooth slice organ cultures under normoxic and hypoxic conditions and in the presence of L-MIM. CONCLUSIONS: L-MIM and hypoxia modulate production of angiogenin via HIF-1 differentially and the response depends on the culture model. Given the role of angiogenin in regeneration the here presented results are of high relevance for pre-conditioning approaches for cell therapy and tissue engineering in the field of regenerative endodontics.


Asunto(s)
Pulpa Dental/citología , Hipoxia , Mimosina/farmacología , Ribonucleasa Pancreática/metabolismo , Células Cultivadas , Equinomicina/farmacología , Ensayo de Inmunoadsorción Enzimática , Humanos , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa Pancreática/genética
16.
Phytother Res ; 30(8): 1230-42, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27213712

RESUMEN

Mimosine [ß-[N-(3-hydroxy-4-oxypyridyl)]-α-aminopropionic acid] is a non-protein amino acid found in the members of Mimosoideae family. There are a considerable number of reports available on the chemistry, methods for estimation, biosynthesis, regulation, and degradation of this secondary metabolite. On the other hand, over the past years of active research, mimosine has been found to have various biological activities such as anti-cancer, antiinflammation, anti-fibrosis, anti-influenza, anti-virus, herbicidal and insecticidal activities, and others. Mimosine is a leading compound of interest for use in the development of RAC/CDC42-activated kinase 1 (PAK1)-specific inhibitors for the treatment of various diseases/disorders, because PAK1 is not essential for the growth of normal cells. Interestingly, the new roles of mimosine in malignant glioma treatment, regenerative dentistry, and phytoremediation are being emerged. These identified properties indicate an exciting future for this amino acid. The present review is focused on the chemistry and recognized biological activities of mimosine in an attempt to draw a link between these two characteristics. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Mimosina/química , Humanos
17.
J Basic Microbiol ; 56(5): 580-5, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26773324

RESUMEN

The presence of the toxic amino acid mimosine in Leucaena leucocephala restricts its use as a protein source for ruminants. Rumen bacteria degrade mimosine to 3,4- and 2,3-dihydroxypyridine (DHP), which remain toxic. Synergistes jonesii is believed to be the main bacterium responsible for degradation of these toxic compounds but other bacteria may also be involved. In this study, a commercial inoculum provided by the Queensland's Department of Agriculture, Fisheries, and Forestry was screened for isolation and characterization of mimosine, 3,4- and 2,3-DHP degrading bacterial strains. A new medium for screening of 2,3-DHP degrading bacteria was developed. Molecular and biochemical approaches used in this study revealed four bacterial isolates - Streptococcus lutetiensis, Clostridium butyricum, Lactobacillus vitulinus, and Butyrivibrio fibrisolvens - to be able to completely degrade mimosine within 7 days of incubation. It was also observed that C. butyricum and L. vitulinus were able to partially degrade 2,3-DHP within 12 days of incubation, while S. lutetiensis, was able to fully degrade both 3,4 and 2,3 DHP. Collectively, we concluded that S. jonesii is not the sole bacterium responsible for detoxification of Leucaena. Comprehensive screening of rumen fluid of cattle grazing on Leucaena pastures is needed to identify additional mimosine-detoxifying bacteria and contribute to development of more effective inoculums to be used by farmers against Leucaena toxicity.


Asunto(s)
Bacterias/metabolismo , Fabaceae/metabolismo , Mimosina/metabolismo , Piridinas/metabolismo , Rumen/microbiología , Animales , Bacterias/aislamiento & purificación , Bovinos , Fabaceae/toxicidad , Inactivación Metabólica
18.
J Biol Chem ; 289(9): 5730-46, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24421316

RESUMEN

Mimosine is an effective cell synchronization reagent used for arresting cells in late G1 phase. However, the mechanism underlying mimosine-induced G1 cell cycle arrest remains unclear. Using highly synchronous cell populations, we show here that mimosine blocks S phase entry through ATM activation. HeLa S3 cells are exposed to thymidine for 15 h, released for 9 h by washing out the thymidine, and subsequently treated with 1 mM mimosine for a further 15 h (thymidine → mimosine). In contrast to thymidine-induced S phase arrest, mimosine treatment synchronizes >90% of cells at the G1-S phase boundary by inhibiting the transition of the prereplication complex to the preinitiation complex. Mimosine treatment activates ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint signaling without inducing DNA damage. Inhibition of ATM activity is found to induce mimosine-arrested cells to enter S phase. In addition, ATM activation by mimosine treatment is mediated by reactive oxygen species (ROS). These results suggest that, upon mimosine treatment, ATM blocks S phase entry in response to ROS, which prevents replication fork stalling-induced DNA damage.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Fase G1/efectos de los fármacos , Mimosina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Fase S/efectos de los fármacos , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Células COS , Chlorocebus aethiops , Fase G1/genética , Células HeLa , Humanos , Fase S/genética
19.
Kidney Int ; 87(4): 761-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25469848

RESUMEN

Renal endothelin-converting enzyme (ECE)-1 is induced in experimental diabetes and following radiocontrast administration, conditions characterized by renal hypoxia, hypoxia-inducible factor (HIF) stabilization, and enhanced endothelin synthesis. Here we tested whether ECE-1 might be a HIF-target gene in vitro and in vivo. ECE-1 transcription and expression increased in cultured vascular endothelial and proximal tubular cell lines, subject to hypoxia, to mimosine or cobalt chloride. These interventions are known to stabilize HIF signaling by inhibition of HIF-prolyl hydroxylases. In rats, HIF-prolyl-hydroxylase inhibition by mimosine or FG-4497 increased HIF-1α immunostaining in renal tubules, principally in distal nephron segments. This was associated with markedly enhanced ECE-1 protein expression, predominantly in the renal medulla. A progressive and dramatic increase in ECE-1 immunostaining over time, in parallel with enhanced HIF expression, was also noted in conditional von Hippel-Lindau knockout mice. Since HIF and STAT3 are cross-stimulated, we triggered HIF expression by STAT3 activation in mice, transfected by or injected with a chimeric IL-6/IL-6-receptor protein, and found a similar pattern of enhanced ECE-1 expression. Chromatin immunoprecipitation sequence (ChIP-seq) and PCR analysis in hypoxic endothelial cells identified HIF binding at the ECE-1 promoter and intron regions. Thus, our findings suggest that ECE-1 may be a novel HIF-target gene.


Asunto(s)
Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Animales , Hipoxia de la Célula/fisiología , Células Cultivadas , Cobalto/farmacología , Dioxigenasas/antagonistas & inhibidores , Enzimas Convertidoras de Endotelina , Células Endoteliales de la Vena Umbilical Humana , Humanos , Intrones , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Mimosina/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Inhibidores de Prolil-Hidroxilasa/farmacología , Regiones Promotoras Genéticas , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transcripción Genética , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/metabolismo
20.
Plant Physiol ; 164(2): 922-34, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24351687

RESUMEN

The tree legume Leucaena leucocephala contains a large amount of a toxic nonprotein aromatic amino acid, mimosine, and also an enzyme, mimosinase, for mimosine degradation. In this study, we isolated a 1,520-bp complementary DNA (cDNA) for mimosinase from L. leucocephala and characterized the encoded enzyme for mimosine-degrading activity. The deduced amino acid sequence of the coding region of the cDNA was predicted to have a chloroplast transit peptide. The nucleotide sequence, excluding the sequence for the chloroplast transit peptide, was codon optimized and expressed in Escherichia coli. The purified recombinant enzyme was used in mimosine degradation assays, and the chromatogram of the major product was found to be identical to that of 3-hydroxy-4-pyridone (3H4P), which was further verified by electrospray ionization-tandem mass spectrometry. The enzyme activity requires pyridoxal 5'-phosphate but not α-keto acid; therefore, the enzyme is not an aminotransferase. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products. The dependence of the enzyme on pyridoxal 5'-phosphate and the production of 3H4P with the release of ammonia indicate that it is a carbon-nitrogen lyase. It was found to be highly efficient and specific in catalyzing mimosine degradation, with apparent Km and Vmax values of 1.16×10(-4) m and 5.05×10(-5) mol s(-1) mg(-1), respectively. The presence of other aromatic amino acids, including l-tyrosine, l-phenylalanine, and l-tryptophan, in the reaction did not show any competitive inhibition. The isolation of the mimosinase cDNA and the biochemical characterization of the recombinant enzyme will be useful in developing transgenic L. leucocephala with reduced mimosine content in the future.


Asunto(s)
Biocatálisis , Liasas de Carbono-Nitrógeno/metabolismo , Fabaceae/enzimología , Mimosina/metabolismo , Arabidopsis/enzimología , Liasas de Carbono-Nitrógeno/aislamiento & purificación , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Clonación Molecular , Codón/genética , Secuencia Conservada , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Escherichia coli/metabolismo , Respuesta al Choque Térmico , Cinética , Liasas/metabolismo , Espectrometría de Masas , Mimosina/química , Modelos Biológicos , Sistemas de Lectura Abierta/genética , Filogenia , Piridonas/química , Piridonas/metabolismo , Proteínas Recombinantes/metabolismo , Estándares de Referencia , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA