Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Intervalo de año de publicación
1.
Exp Cell Res ; 432(1): 113779, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37709247

RESUMEN

AIM: It has long been recognized that resistance exercise can substantially increase skeletal muscle mass and strength, but whether it can protect against glucocorticoid-induced muscle atrophy and its potential mechanism is yet to be determined. This study aimed to investigate the protective effects of resistance exercise in dexamethasone-induced muscle atrophy and elucidate the possible function of exercise-induced protein Sestrin2 in this process. METHODS: Eight-week-old male C57BL/6J mice carried out the incremental mouse ladder exercise for 11 weeks. Two weeks before the end of the intervention, mice were daily intraperitoneally injected with dexamethasone. Body composition, muscle mass, and exercise performance were examined to evaluate muscle atrophy. In vitro, C2C12 cells were used for RT-qPCR, Western Blot, and immunofluorescence experiments to elucidate the potential mechanism. RESULTS: Our results showed that long-term resistance exercise is an effective intervention for dexamethasone-induced muscle atrophy. We also found that Sestrin2 plays a vital role in dexamethasone-induced muscle atrophy. In both animal (P = .0006) and cell models (P = .0266), dexamethasone intervention significantly reduced the protein expression of Sestrin2, which was increased (P = .0112) by resistance exercise. Inversely, overexpression of Sestrin2 improved (P < .0001) dexamethasone-induced myotube cell atrophy by reducing the activation of the ubiquitin-proteasome pathway via inhibiting Forkhead box O3 (FoxO3a) and myostatin (MSTN)/small mother against decapentaplegic (Smad) signaling pathways. CONCLUSION: Taken together, our results indicated that Sestrin2 may serve as an effective molecule that mimics the protective effect of resistance exercise on dexamethasone-induced muscle atrophy.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Animales , Masculino , Ratones , Línea Celular , Dexametasona/farmacología , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Miostatina/metabolismo , Miostatina/farmacología , Sestrinas/metabolismo
2.
Cell Commun Signal ; 21(1): 93, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143106

RESUMEN

BACKGROUND: Extravillous trophoblast (EVT) cell invasion is a tightly regulated process that requires for a normal pregnancy. The epithelial-mesenchymal transition (EMT) has been implicated in EVT cell invasion. Growth differentiation factor-8 (GDF-8), a member of the transforming growth factor-beta (TGF-ß) superfamily, is expressed in the human placenta and promotes EVT cell invasion by upregulating the expression of matrix metalloproteinase 2 (MMP2). However, the underlying molecular mechanism of GDF-8-induced MMP2 expression remains undetermined. Therefore, the present study aims to examine the role of Snail and Slug, the EMT-related transcriptional regulators, in GDF-8-stimulated MMP2 expression and cell invasion in HTR-8/SVneo human EVT cell line and primary cultures of human EVT cells. METHODS: HTR-8/SVneo and primary cultures of human EVT cells were used to examine the effect of GDF-8 on MMP2 expression and explore the underlying mechanism. For gene silencing and overexpression, the HTR-8/SVneo cell line was used to make the experiments more technically feasible. The cell invasiveness was measured by Matrigel-coated transwell invasion assay. RESULTS: GDF-8 stimulated MMP2 expression in both HTR-8/SVneo and primary EVT cells. The stimulatory effect of GDF-8 on MMP2 expression was blocked by the inhibitor of TGF-ß type-I receptors, SB431542. Treatment with GDF-8 upregulated Snail and Slug expression in both HTR-8/SVneo and primary EVT cells. The stimulatory effects of GDF-8 on Snail and Slug expression were blocked by pretreatment of SB431542 and siRNA-mediated knockdown of SMAD4. Interestingly, using the siRNA knockdown approach, our results showed that Snail but not Slug was required for the GDF-8-induced MMP2 expression and cell invasion in HTR-8/SVneo cells. The reduction of MMP2 expression in the placentas with preeclampsia (PE) was also observed. CONCLUSIONS: These findings discover the physiological function of GDF-8 in the human placenta and provide important insights into the regulation of MMP2 expression in human EVT cells. Video Abstract.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Trofoblastos , Femenino , Humanos , Embarazo , Movimiento Celular , Metaloproteinasa 2 de la Matriz/metabolismo , Miostatina/metabolismo , Miostatina/farmacología , ARN Interferente Pequeño/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Trofoblastos/metabolismo
3.
Pflugers Arch ; 473(6): 969-976, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33895875

RESUMEN

Myostatin is a signaling molecule produced by skeletal muscle cells (myokine) that inhibits muscle hypertrophy and has further paracrine and endocrine effects in other organs including bone. Myostatin binds to activin receptor type 2B which forms a complex with transforming growth factor-ß type I receptor (TGF-ßRI) and induces intracellular p38MAPK and NFκB signaling. Fibroblast growth factor 23 (FGF23) is a paracrine and endocrine mediator produced by bone cells and regulates phosphate and vitamin D metabolism in the kidney. P38MAPK and NFκB-dependent store-operated Ca2+ entry (SOCE) are positive regulators of FGF23 production. Here, we explored whether myostatin influences the synthesis of FGF23. Fgf23 gene expression was determined by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast-like cells. UMR106 cells expressed activin receptor type 2A and B. Myostatin upregulated Fgf23 gene expression and protein production. The myostatin effect on Fgf23 was significantly attenuated by TGF-ßRI inhibitor SB431542, p38MAPK inhibitor SB202190, and NFκB inhibitor withaferin A. Moreover, SOCE inhibitor 2-APB blunted the myostatin effect on Fgf23. Taken together, myostatin is a stimulator of Fgf23 expression in UMR106 cells, an effect at least partially mediated by downstream TGF-ßRI/p38MAPK signaling as well as NFκB-dependent SOCE.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos/metabolismo , Miostatina/farmacología , Osteoblastos/metabolismo , Receptores de Activinas/metabolismo , Animales , Benzamidas/farmacología , Calcio/metabolismo , Línea Celular , Línea Celular Tumoral , Dioxoles/farmacología , Factor-23 de Crecimiento de Fibroblastos/genética , Imidazoles/farmacología , Ratones , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Osteoblastos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Ratas , Witanólidos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050585

RESUMEN

Myostatin is a myokine that regulates muscle function and mass, producing muscle atrophy. Myostatin induces the degradation of myofibrillar proteins, such as myosin heavy chain or troponin. The main pathway that mediates protein degradation during muscle atrophy is the ubiquitin proteasome system, by increasing the expression of atrogin-1 and MuRF-1. In addition, myostatin activates the NF-κB signaling pathway. Renin-angiotensin system (RAS) also regulates muscle mass. Angiotensin (1-7) (Ang-(1-7)) has anti-atrophic properties in skeletal muscle. In this paper, we evaluated the effect of Ang-(1-7) on muscle atrophy and signaling induced by myostatin. The results show that Ang-(1-7) prevented the decrease of the myotube diameter and myofibrillar protein levels induced by myostatin. Ang-(1-7) also abolished the increase of myostatin-induced reactive oxygen species production, atrogin-1, MuRF-1, and TNF-α gene expressions and NF-κB signaling activation. Ang-(1-7) inhibited the activity mediated by myostatin through Mas receptor, as is demonstrated by the loss of all Ang-(1-7)-induced effects when the Mas receptor antagonist A779 was used. Our results show that the effects of Ang-(1-7) on the myostatin-dependent muscle atrophy and signaling are blocked by MK-2206, an inhibitor of Akt/PKB. Together, these data indicate that Ang-(1-7) inhibited muscle atrophy and signaling induced by myostatin through a mechanism dependent on Mas receptor and Akt/PKB.


Asunto(s)
Angiotensina I/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Miostatina/farmacología , FN-kappa B/metabolismo , Fragmentos de Péptidos/farmacología , Transducción de Señal , Animales , Línea Celular , Ratones , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Int J Mol Sci ; 21(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429150

RESUMEN

Myostatin is a negative regulator of muscle cell growth and proliferation. Furthermore, myostatin directly affects the expression of 14q32 microRNAs by binding the 14q32 locus. Direct inhibition of 14q32 microRNA miR-495-3p decreased postinterventional restenosis via inhibition of both vascular smooth muscle cell (VSMC) proliferation and local inflammation. Here, we aimed to investigate the effects of myostatin in a mouse model for postinterventional restenosis. In VSMCs in vitro, myostatin led to the dose-specific downregulation of 14q32 microRNAs miR-433-3p, miR-494-3p, and miR-495-3p. VSMC proliferation was inhibited, where cell migration and viability remained unaffected. In a murine postinterventional restenosis model, myostatin infusion did not decrease restenosis, neointimal area, or lumen stenosis. Myostatin inhibited expression of both proliferation marker PCNA and of 14q32 microRNAs miR-433-3p, miR-494-3p, and miR-495-3p dose-specifically in cuffed femoral arteries. However, 14q32 microRNA expression remained unaffected in macrophages and macrophage activation as well as macrophage influx into lesions were not decreased. In conclusion, myostatin did not affect postinterventional restenosis. Although myostatin inhibits 14q32 microRNA expression and proliferation in VSMCs, myostatin had no effect on macrophage activation and infiltration. Our findings underline that restenosis is driven by both VSMC proliferation and local inflammation. Targeting only one of these components is insufficient to prevent restenosis.


Asunto(s)
Reestenosis Coronaria/genética , Regulación de la Expresión Génica , Inflamación/genética , MicroARNs/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miostatina/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cromosomas de los Mamíferos/genética , Arteria Femoral/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Am J Physiol Cell Physiol ; 317(4): C674-C686, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268780

RESUMEN

G protein-coupled receptor kinase 2 (GRK2) is an important protein involved in ß-adrenergic receptor desensitization. In addition, studies have shown GRK2 can modulate different metabolic processes in the cell. For instance, GRK2 has been recently shown to promote mitochondrial biogenesis and increase ATP production. However, the role of GRK2 in skeletal muscle and the signaling mechanisms that regulate GRK2 remain poorly understood. Myostatin is a well-known myokine that has been shown to impair mitochondria function. Here, we have assessed the role of myostatin in regulating GRK2 and the subsequent downstream effect of myostatin regulation of GRK2 on mitochondrial respiration in skeletal muscle. Myostatin treatment promoted the loss of GRK2 protein in myoblasts and myotubes in a time- and dose-dependent manner, which we suggest was through enhanced ubiquitin-mediated protein loss, as treatment with proteasome inhibitors partially rescued myostatin-mediated loss of GRK2 protein. To evaluate the effects of GRK2 on mitochondrial respiration, we generated stable myoblast lines that overexpress GRK2. Stable overexpression of GRK2 resulted in increased mitochondrial content and enhanced mitochondrial/oxidative respiration. Interestingly, although overexpression of GRK2 was unable to prevent myostatin-mediated impairment of mitochondrial respiratory function, elevated levels of GRK2 blocked the increased autophagic flux observed following treatment with myostatin. Overall, our data suggest a novel role for GRK2 in regulating mitochondria mass and mitochondrial respiration in skeletal muscle.


Asunto(s)
Autofagia/efectos de los fármacos , Quinasa 2 del Receptor Acoplado a Proteína-G/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mioblastos/efectos de los fármacos , Miostatina/farmacología , Animales , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Ratones , Mitocondrias/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miostatina/metabolismo , Receptores Adrenérgicos beta/efectos de los fármacos , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/efectos de los fármacos , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
7.
J Cell Physiol ; 234(6): 9793-9801, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30378113

RESUMEN

In rheumatoid arthritis (RA), a chronic inflammatory disease, loss of muscle mass is an important contributor to the loss of muscle strength in RA patients. Myostatin, a myokine involved in the process of muscle hypertrophy and myogenesis, enhances osteoclast differentiation and inflammation. Here, we investigated the mechanisms of myostatin in RA synovial inflammation. We found a positive correlation between myostatin and tumor necrosis factor-α (TNF-α), a well-known proinflammatory cytokine, in RA synovial tissue. Our in vitro results also showed that myostatin dose-dependently induced TNF-α expression through the phosphatidylinositol 3-kinase (PI3K)-Akt-AP-1 signaling pathway. Myostatin treatment of human MH7A cells stimulated AP-1-induced luciferase activity and activation of the c-Jun binding site on the TNF-α promoter. Our results indicated that myostatin increases TNF-α expression via the PI3K-Akt-AP-1 signaling pathway in human RA synovial fibroblasts. Myostatin appears to be a promising target in RA therapy.


Asunto(s)
Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Miostatina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factor de Necrosis Tumoral alfa/genética
8.
Am J Physiol Endocrinol Metab ; 316(6): E1036-E1049, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30888862

RESUMEN

Circulating myostatin-attenuating agents are being developed to treat muscle-wasting disease despite their potential to produce serious off-target effects, as myostatin/activin receptors are widely distributed among many nonmuscle tissues. Our studies suggest that the myokine not only inhibits striated muscle growth but also regulates pituitary development and growth hormone (GH) action in the liver. Using a novel myostatin-null label-retaining model (Jekyll mice), we determined that the heterogeneous pool of pituitary stem, transit-amplifying, and progenitor cells in Jekyll mice depletes more rapidly after birth than the pool in wild-type mice. This correlated with increased levels of GH, prolactin, and the cells that secrete these hormones, somatotropes and lactotropes, respectively, in Jekyll pituitaries. Recombinant myostatin also stimulated GH release and gene expression in pituitary cell cultures although inhibiting prolactin release. In primary hepatocytes, recombinant myostatin blocked GH-stimulated expression of two key mediators of growth, insulin-like growth factor (IGF)1 and the acid labile subunit and increased expression of an inhibitor, IGF-binding protein-1. The significance of these findings was demonstrated by smaller muscle fiber size in a model lacking myostatin and liver IGF1 expression (LID-o-Mighty mice) compared with that in myostatin-null (Mighty) mice. These data together suggest that myostatin may regulate pituitary development and function and that its inhibitory actions in muscle may be partly mediated by attenuating GH action in the liver. They also suggest that circulating pharmacological inhibitors of myostatin could produce unintended consequences in these and possibly other tissues.


Asunto(s)
Hormona del Crecimiento/metabolismo , Hepatocitos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Lactotrofos/metabolismo , Miostatina/genética , Hipófisis/crecimiento & desarrollo , Prolactina/metabolismo , Somatotrofos/metabolismo , Animales , Caquexia , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Desarrollo de Medicamentos , Glicoproteínas/efectos de los fármacos , Glicoproteínas/metabolismo , Hormona del Crecimiento/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/efectos de los fármacos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/efectos de los fármacos , Lactotrofos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Noqueados , Modelos Animales , Miostatina/farmacología , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Cultivo Primario de Células , Prolactina/efectos de los fármacos , Proteínas Recombinantes , Somatotrofos/efectos de los fármacos , Células Madre
9.
Biol Reprod ; 101(1): 63-75, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31004472

RESUMEN

Growth differentiation factor 8 (GDF8), also known as myostatin, is a member of the transforming growth factor-ß (TGF-ß) family and has been identified as a strong physiological regulator of muscle differentiation. Recently, the functional role of GDF8 in reproductive organs has received increased interest following its detection in the human placenta and uterus. To investigate the effects of GDF8 during porcine oocyte in vitro maturation (IVM), we assessed the quality of matured oocytes. Furthermore, we investigated the specific gene transcription and protein activation levels in oocytes and cumulus cells after IVM and subsequent embryonic development after in vitro fertilization and parthenogenetic activation. Prior to these experiments, the concentration of GDF8 in porcine follicular fluid was determined. During the entire IVM period, 1.3 ng/mL GDF8 and its signaling inhibitor SB431542 (SB) at 5 µM were added as control, SB, SB + GDF8, and GDF8 groups, respectively. Our results demonstrate that supplementation with GDF8 during porcine oocyte IVM enhanced both meiotic and cytoplasmic maturation, with altered transcriptional patterns, via activation of Sma- and Mad-related protein 2/3 (SMAD2/3). Using the pharmacological inhibitor SB431542, we demonstrated that inhibition of GDF8-induced Smad2/3 signaling reduces matured oocyte quality. In conclusion, for the first time, we demonstrated paracrine factor GDF8 in porcine follicular fluid in vivo. Furthermore, we showed that GDF8 supplementation improved mature oocyte quality by regulating p38 mitogen-activated protein kinase phosphorylation and intracellular glutathione and reactive oxygen species levels during porcine IVM.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Miostatina/farmacología , Oocitos/citología , Oocitos/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Animales , Benzamidas/farmacología , Células Cultivadas , Dioxoles/farmacología , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Femenino , Fertilización In Vitro/normas , Fertilización In Vitro/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/fisiología , Oogénesis/efectos de los fármacos , Control de Calidad , Transducción de Señal/efectos de los fármacos , Proteína Smad2/genética , Proteína smad3/genética , Porcinos
10.
Biogerontology ; 20(4): 433-443, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30726519

RESUMEN

One of the most studied and widely accepted conjectures of aging process is the oxidative stress theory. Current studies have generated disputes on the effects of GDF11 and GDF8, a closely related member of GDF11, on rejuvenation and anti-aging properties. In this study, we first demonstrated that when recombinant GDF8 (rGDF8) and GDF11 (rGDF11) of the fish Nothobranchius guentheri were injected into 20-month-old male mice, their serum GDF8 and GDF11 levels were clearly increased. We also showed that injection of rGDF8 and rGDF11 had little influences on the body weight and serological parameters of the mice, indicating their general condition and physiology were not affected. Based on these findings, we started to test the effects of administration of piscine rGDF11 and rGDF8 on the aging process of male mice and to explore the underlying mechanisms. It was found that rGDF11 was able to reduce the levels of AGEs, protein oxidation and lipid peroxidation, and to slow down the accumulation of age-related histological markers, while rGDF8 was not. Moreover, rGDF11 significantly prevented the decrease in CAT, GPX and SOD activities, but rGDF8 did not. Collectively, these results suggest that it is GDF11 but not GDF8 that can exert rejuvenation and anti-aging activities via the action of antioxidant system. It is also the first report that shows the activity of GDF11 is not species-specific, implicating potential usefulness of piscine GDF11 in prolonging the lifespan of the elderly.


Asunto(s)
Envejecimiento , Ciprinodontiformes , Proteínas de Peces/farmacología , Miostatina/farmacología , Estrés Oxidativo/efectos de los fármacos , Rejuvenecimiento/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Diferenciación de Crecimiento/clasificación , Factores de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/farmacología , Masculino , Ratones , Proteínas Recombinantes/farmacología , Resultado del Tratamiento
11.
Dev Dyn ; 247(12): 1241-1252, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30325085

RESUMEN

BACKGROUND: Myostatin (MSTN), a member of the transforming growth factor-ß (TGF-ß) superfamily, has been implicated in the negative regulation of skeletal myogenesis. However, the molecular mechanism through which MSTN regulates early embryonic myogenesis is not well understood. RESULTS: We demonstrate that MSTN regulates early embryonic myogenesis by promoting the epithelial-to-mesenchymal transition (EMT) of the dermomyotome during somitogenesis in chicks. We show that the MSTN gene is first expressed at the center of the dermomyotome. As somitogenesis progresses, its expression extends dorsally and ventrally along the plane of the dermomyotome. By combining in situ hybridization and immunofluorescence assays, we demonstrate that the expression pattern of MSTN is spatiotemporally well correlated with EMT of the dermomyotome. Our gain- and loss-of-function experiments further reveal that MSTN can induce EMT of the chick dermomyotome. We also show that MSTN induces EMT of a nonsmall cell lung carcinoma cell line (A549) and Madin-Darby canine kidney cells in vitro. CONCLUSIONS: Our experimental data suggest that MSTN regulates myogenesis by promoting EMT during somitogenesis. These findings provide novel insights into the functions of MSTN during early embryonic myogenesis. Developmental Dynamics 247:1241-1252, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Miostatina/análisis , Miostatina/farmacología , Somitos/crecimiento & desarrollo , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Embrión de Pollo , Perros , Desarrollo Embrionario , Epitelio/crecimiento & desarrollo , Humanos , Células de Riñón Canino Madin Darby , Miostatina/genética , Somitos/embriología
12.
Biochem Biophys Res Commun ; 494(1-2): 278-284, 2017 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-29024627

RESUMEN

Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-ß (TGF-ß) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 µg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 µg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 µg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Mioblastos/efectos de los fármacos , Miostatina/farmacología , Factor 2 de Elongación Peptídica/antagonistas & inhibidores , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Regulación de la Expresión Génica , Ratones , Desarrollo de Músculos/genética , Mioblastos/citología , Mioblastos/metabolismo , Miostatina/genética , Miostatina/metabolismo , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
13.
J Biol Chem ; 290(6): 3390-404, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25368322

RESUMEN

GDF8, or myostatin, is a member of the TGF-ß superfamily of secreted polypeptide growth factors. GDF8 is a potent negative regulator of myogenesis both in vivo and in vitro. We found that GDF8 signaling was inhibited by the small molecule ATP competitive inhibitors dorsomorphin and LDN-193189. These compounds were previously shown to be potent inhibitors of BMP signaling by binding to the BMP type I receptors ALK1/2/3/6. We present the crystal structure of the type II receptor ActRIIA with dorsomorphin and demonstrate that dorsomorphin or LDN-193189 target GDF8 induced Smad2/3 signaling and repression of myogenic transcription factors. As a result, both inhibitors rescued myogenesis in myoblasts treated with GDF8. As revealed by quantitative live cell microscopy, treatment with dorsomorphin or LDN-193189 promoted the contractile activity of myotubular networks in vitro. We therefore suggest these inhibitors as suitable tools to promote functional myogenesis.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Diferenciación Celular , Mioblastos/efectos de los fármacos , Miostatina/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal , Receptores de Activinas Tipo II/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Ratones , Datos de Secuencia Molecular , Mioblastos/citología , Mioblastos/metabolismo , Unión Proteica , Células Sf9 , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Spodoptera , Factores de Transcripción/metabolismo
14.
Am J Physiol Endocrinol Metab ; 311(5): E859-E868, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27624103

RESUMEN

Numerous compounds stimulate rodent ß-cell proliferation; however, translating these findings to human ß-cells remains a challenge. To examine human ß-cell proliferation in response to such compounds, we developed a medium-throughput in vitro method of quantifying adult human ß-cell proliferation markers. This method is based on high-content imaging of dispersed islet cells seeded in 384-well plates and automated cell counting that identifies fluorescently labeled ß-cells with high specificity using both nuclear and cytoplasmic markers. ß-Cells from each donor were assessed for their function and ability to enter the cell cycle by cotransduction with adenoviruses encoding cell cycle regulators cdk6 and cyclin D3. Using this approach, we tested 12 previously identified mitogens, including neurotransmitters, hormones, growth factors, and molecules, involved in adenosine and Tgf-1ß signaling. Each compound was tested in a wide concentration range either in the presence of basal (5 mM) or high (11 mM) glucose. Treatment with the control compound harmine, a Dyrk1a inhibitor, led to a significant increase in Ki-67+ ß-cells, whereas treatment with other compounds had limited to no effect on human ß-cell proliferation. This new scalable approach reduces the time and effort required for sensitive and specific evaluation of human ß-cell proliferation, thus allowing for increased testing of candidate human ß-cell mitogens.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Activinas/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Adenosina-5'-(N-etilcarboxamida)/farmacología , Adulto , Automatización , Técnicas de Cultivo de Célula , Evaluación Preclínica de Medicamentos , Eritropoyetina/farmacología , Exenatida , Femenino , GABAérgicos/farmacología , Harmina/farmacología , Humanos , Incretinas/farmacología , Masculino , Persona de Mediana Edad , Inhibidores de la Monoaminooxidasa/farmacología , Miostatina/farmacología , Nucleósidos/farmacología , Péptidos/farmacología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Prolactina/farmacología , Regeneración/efectos de los fármacos , Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Vasodilatadores/farmacología , Ponzoñas/farmacología , Adulto Joven , Ácido gamma-Aminobutírico/farmacología
15.
Genet Mol Res ; 15(2)2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27420960

RESUMEN

Prokaryotic expression technology was used to express maltose-binding protein binding myostatin (MSTN) propeptide fusion protein. Six disease-free Altay lambs were used in this study. The right leg gastrocnemii were injected with MSTN recombinant propeptide protein. The left leg gastrocnemii (the control group) were injected with the same dose of phosphate based saline. The lambs were fed during four months under the same conditions and then slaughtered. Gastrocnemius samples were hematoxylin-eosin stained and the size of the muscle fibers was measured. A real-time polymerase chain reaction (RT-PCR) showed that single gastrocnemius cells in the experimental group had an average area of 1163.01 µm(2), while it was 845.09 µm(2) in the control group (P < 0.05). This indicates that the MSTN propeptide biological agents had an inhibitory effect on MSTN. In order to reveal its mechanism, RT-PCR was conducted to detect the expression of the differentiation-associated genes MyoD, Myf5, Myogenin, p21, and Smad3. The results showed that, in the MSTN propeptide biological agent injected group, expression levels of MSTN, Smad3, and p21 were lower than the control group, while Myf5, MyoD, and Myogenin were higher compared to the control group. This indicates that, when expression of the MSTN gene was inhibited, muscle cell differentiation and growth can be promoted by Smad3 up-regulated expression of Myf5, MyoD, and Myogenin.


Asunto(s)
Músculo Esquelético/efectos de los fármacos , Miostatina/farmacología , Ovinos/crecimiento & desarrollo , Animales , Femenino , Inyecciones Intramusculares , Masculino , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Miogenina/genética , Miogenina/metabolismo , Miostatina/administración & dosificación , Ovinos/genética , Proteína smad3/genética , Proteína smad3/metabolismo
16.
Gen Comp Endocrinol ; 210: 23-9, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25449661

RESUMEN

Members of the TGF-ß superfamily are involved in numerous cell functions; however, except for myostatin, their roles in the regulation of muscle growth in fish are completely unknown. We measured tgf-ß1, tgf-ß2, tgf-ß3, inhibin ßA (inh) and follistatin (fst) gene expression during muscle growth recovery following a fasting period. We observed that tgf-ß1a and tgf-ß2 expression were quickly down-regulated after refeeding and that tgf-ß3 reached its highest level of expression 7days post-refeeding, mirroring myogenin expression. Inh ßA1 mRNA levels decreased sharply after refeeding, in contrast to fst b2 expression, which peaked at day 2. No significant modification of expression was observed for tgf-ß1a, tgf-ß1b, tgf-ß1c and tgf-ß6 during refeeding. In vitro, tgf-ß2 and inh ßA1 expression decreased during the differentiation of satellite cells, whereas tgf-ß3 expression increased following the same pattern as myogenin. Surprisingly, fst b1 and fst b2 expression decreased during differentiation, whereas no variation was observed in fst a1 and fst a2 expression levels. In vitro analyses also indicated that IGF1 treatment up-regulated tgf-ß3, inh ßA1 and myogenin expression, and that MSTN treatment increased fst b1 and fst b2 expression. In conclusion, we showed that the expression of tgf-ß2, tgf-ß3 and inh ßA1 is dynamically regulated during muscle growth resumption and satellite cell differentiation, strongly suggesting that these genes have a role in the regulation of muscle growth.


Asunto(s)
Diferenciación Celular/genética , Subunidades beta de Inhibinas/genética , Desarrollo de Músculos/genética , Oncorhynchus mykiss , Células Satélite del Músculo Esquelético/fisiología , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta3/genética , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/farmacología , Subunidades beta de Inhibinas/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Músculos/efectos de los fármacos , Músculos/fisiología , Miostatina/farmacología , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crecimiento & desarrollo , Oncorhynchus mykiss/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo
17.
Biochem Cell Biol ; 92(3): 226-34, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24882465

RESUMEN

Although myostatin functions primarily as a negative regulator of skeletal muscle growth and development, accumulating biological and epidemiological evidence indicates an important contributing role in liver disease. In this study, we demonstrate that myostatin suppresses the proliferation of mouse Hepa-1c1c7 murine-derived liver cells (50%; p < 0.001) in part by reducing the expression of the cyclins and cyclin-dependent kinases that elicit G1-S phase transition of the cell cycle (p < 0.001). Furthermore, real-time PCR-based quantification of the long noncoding RNA metastasis associated lung adenocarcinoma transcript 1 (Malat1), recently identified as a myostatin-responsive transcript in skeletal muscle, revealed a significant downregulation (25% and 50%, respectively; p < 0.05) in the livers of myostatin-treated mice and liver cells. The importance of Malat1 in liver cell proliferation was confirmed via arrested liver cell proliferation (p < 0.05) in response to partial Malat1 siRNA-mediated knockdown. Myostatin also significantly blunted insulin-stimulated glucose uptake and Akt phosphorylation in liver cells while increasing the phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS), a protein that is essential for cancer cell proliferation and insulin-stimulated glucose transport. Together, these findings reveal a plausible mechanism by which circulating myostatin contributes to the diminished regenerative capacity of the liver and diseases characterized by liver insulin resistance.


Asunto(s)
Antineoplásicos/farmacología , Glucosa/metabolismo , Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Miostatina/farmacología , ARN Largo no Codificante/antagonistas & inhibidores , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Miostatina/química , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
18.
Am J Physiol Cell Physiol ; 304(10): C995-1001, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23485710

RESUMEN

Myostatin, a member of the transforming growth factor-ß (TGF-ß) superfamily of secreted proteins, is a potent negative regulator of myogenesis. Free myostatin induces the phosphorylation of the Smad family of transcription factors, which, in turn, regulates gene expression, via the canonical TGF-ß signaling pathway. There is, however, emerging evidence that myostatin can regulate gene expression independent of Smad signaling. As such, we acquired global gene expression data from the gastrocnemius muscle of C57BL/6 mice following a 6-day treatment with recombinant myostatin compared with vehicle-treated animals. Of the many differentially expressed genes, the myostatin-associated decrease (-11.20-fold; P < 0.05) in the noncoding metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was the most significant and the most intriguing because of numerous reports describing its novel role in regulating cell growth. We therefore sought to further characterize the role of Malat1 expression in skeletal muscle myogenesis. RT-PCR-based quantification of C2C12 and primary human skeletal muscle cells revealed a significant and persistent upregulation (4- to 7-fold; P < 0.05) of Malat1 mRNA during the differentiation of myoblasts into myotubes. Conversely, targeted knockdown of Malat1 using siRNA suppressed myoblast proliferation by arresting cell growth in the G(0)/G(1) phase. These results reveal Malat1 as novel downstream target of myostatin with a considerable ability to regulate myogenesis. The identification of new targets of myostatin will have important repercussions for regenerative biology through inhibition and/or reversal of muscle atrophy and wasting diseases.


Asunto(s)
Desarrollo de Músculos , Miostatina/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miostatina/farmacología , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Mensajero/biosíntesis , ARN Interferente Pequeño , Proteínas Recombinantes/farmacología
19.
Biochem Biophys Res Commun ; 431(2): 309-14, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23291166

RESUMEN

Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Mioblastos/citología , Miostatina/fisiología , Comunicación Autocrina , Diferenciación Celular/efectos de los fármacos , Línea Celular , Cuerpos Embrioides/citología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Proteína MioD/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Miostatina/genética , Miostatina/farmacología , Comunicación Paracrina , Interferencia de ARN
20.
Gen Comp Endocrinol ; 186: 9-15, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23458288

RESUMEN

Myostatin (MSTN) is well known as a potent inhibitor of muscle growth in mammals and has been shown to both inhibit the growth promoting TORC1 signaling pathway and promote Ubiquitin-Proteasomal and Autophagy-Lysosomal degradative routes. In contrast, in non-mammalian species, despite high structural conservation of MSTN sequence, functional conservation is only assumed. Here, we show that treatment of cultured trout myotubes with human recombinant MSTN (huMSTN) resulted in a significant decrease of their diameter by up to 20%, validating the use of heterologous huMSTN in our in vitro model to monitor the processes by which this growth factor promotes muscle wasting in fish. Accordingly, huMSTN stimulation prevented the full activation by IGF1 of the TORC1 signaling pathway, as revealed by the analysis of the phosphorylation status of 4E-BP1. Moreover, the levels of the proteasome-dependent protein Atrogin1 exhibited an increase in huMSTN treated cells. Likewise, we observed a stimulatory effect of huMSTN treatment on the levels of LC3-II, the more reliable marker of the Autophagy-Lysosomal degradative system. Overall, these results show for the first time in a piscine species the effect of MSTN on several atrophic and hypertrophic pathways and support a functional conservation of this growth factor between lower and higher vertebrates.


Asunto(s)
Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Miostatina/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Lisosomas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trucha
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA