RESUMEN
The type II secretion system (T2SS) transports fully folded proteins of various functions and structures through the outer membrane of Gram-negative bacteria. The molecular mechanisms of substrate recruitment by T2SS remain elusive but a prevailing view is that the secretion determinants could be of a structural nature. The phytopathogenic γ-proteobacteria, Pectobacterium carotovorum and Dickeya dadantii, secrete similar sets of homologous plant cell wall degrading enzymes, mainly pectinases, by similar T2SSs, called Out. However, the orthologous pectate lyases Pel3 and PelI from these bacteria, which share 67% of sequence identity, are not secreted by the counterpart T2SS of each bacterium, indicating a fine-tuned control of protein recruitment. To identify the related secretion determinants, we first performed a structural characterization and comparison of Pel3 with PelI using X-ray crystallography. Then, to assess the biological relevance of the observed structural variations, we conducted a loop-substitution analysis of Pel3 combined with secretion assays. We showed that there is not one element with a definite secondary structure but several distant and structurally flexible loop regions that are essential for the secretion of Pel3 and that these loop regions act together as a composite secretion signal. Interestingly, depending on the crystal contacts, one of these key secretion determinants undergoes disorder-to-order transitions that could reflect its transient structuration upon the contact with the appropriate T2SS components. We hypothesize that such T2SS-induced structuration of some intrinsically disordered zones of secretion substrates could be part of the recruitment mechanism used by T2SS.
Asunto(s)
Proteínas Bacterianas/química , Dickeya/enzimología , Pectobacterium carotovorum/enzimología , Polisacárido Liasas/química , Sistemas de Secreción Tipo II/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Pared Celular/química , Pared Celular/microbiología , Clonación Molecular , Cristalografía por Rayos X , Dickeya/clasificación , Dickeya/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Pectobacterium carotovorum/clasificación , Pectobacterium carotovorum/genética , Filogenia , Células Vegetales/química , Células Vegetales/microbiología , Plantas/química , Plantas/microbiología , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sistemas de Secreción Tipo II/genética , Sistemas de Secreción Tipo II/metabolismoRESUMEN
Complex heterogeneous systems, such as micelles or blood plasma, represent a particularly challenging environment to measure the catalytic parameters of some enzymes, including l-asparaginase. Existing methods are strongly interfered by the presence of plasma proteins, amino acids, as well as other components of plasma. Here we show that FTIR spectroscopy enables continuous real-time measurement of catalytic activity of l-asparaginase, in native and in PEG-chitosan conjugated form, in aqueous solutions as well as in heterogeneous non-transparent multicomponent systems, including colloidal systems or blood plasma, with minimal or no sample preparation. The approach developed is potentially applicable to other enzymatic reactions where the spectroscopic properties of substrate and product do not allow direct measurement with absorption or fluorescence spectroscopy.
Asunto(s)
Asparaginasa/análisis , Asparaginasa/metabolismo , Biocatálisis , Quitosano/química , Humanos , Pectobacterium carotovorum/enzimología , Polietilenglicoles/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Enzymatic prospection indicated that L-asparaginase from Erwinia carotovora (ECAR-LANS) posses low glutaminase activity and much effort has been made to produce therapeutic ECAR-LANS. However, its low stability precludes its use in therapy. Herein, biochemical and biophysical assays provided data highlighting the influence of solubilization and storage into ECAR-LANS structure, stability, and activity. Moreover, innovations in recombinant expression and purification guaranteed the purification of functional tetramers. According to solubilization condition, the L-asparaginase activity and temperature of melting ranged up to 25-32%, respectively. CD spectra indicate the tendency of ECAR-LANS to instability and the influence of ß-structures in activity. These results provide relevant information to guide formulations with prolonged action in the bloodstream.
Asunto(s)
Asparaginasa/metabolismo , Pectobacterium carotovorum/enzimología , Citoplasma/enzimología , Estabilidad de Enzimas , Fluorescencia , Periplasma/enzimologíaRESUMEN
Acute lymphoblastic leukemia (ALL) is a type of cancer with a high incidence in children. The enzyme l-asparaginase (ASNase) constitutes a key element in the treatment of this disease. Four formulations of ASNase from a bacterial source are currently available. However, these formulations are characterized by their high immunogenicity, resulting in the inactivation of the drug, as well as in the occurrence of hypersensitivity reactions in a large number of patients. In this work, we performed an immunoinformatic analysis in order to clarify structural aspects of the immunogenicity of the asparaginase from Escherichia coli and Erwinia carotovora. For this purpose, we performed the prediction of immunogenic and allergenic epitopes in the structure of asparaginases by using the relative frequency of immunogenic peptides for the eight alleles most frequently distributed worldwide. This study showed that there are no significant differences in the level of immunogenicity between the two enzymes, while asparaginase from E. coli presented a higher relative frequency of allergenic epitopes. These results are consistent with previously published reports. However, from a structural point of view, to the best of our knowledge, this is the first report describing the structural determinants that contribute to the hypersensitivity response to this treatment.
Asunto(s)
Asparaginasa/inmunología , Proteínas Bacterianas/inmunología , Epítopos/inmunología , Escherichia coli/enzimología , Pectobacterium carotovorum/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Secuencia de Aminoácidos , Asparaginasa/efectos adversos , Asparaginasa/uso terapéutico , Proteínas Bacterianas/química , Proteínas Bacterianas/uso terapéutico , Niño , Simulación por Computador , Epítopos/química , Escherichia coli/genética , Humanos , Hipersensibilidad/etiología , Hipersensibilidad/inmunología , Pectobacterium carotovorum/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad de la EspecieRESUMEN
MomL is a marine-derived quorum-quenching (QQ) lactonase which can degrade various N-acyl homoserine lactones (AHLs). Intentional modification of MomL may lead to a highly efficient QQ enzyme with broad application potential. In this study, we used a rapid and efficient method combining error-prone polymerase chain reaction (epPCR), high-throughput screening and site-directed mutagenesis to identify highly active MomL mutants. In this way, we obtained two candidate mutants, MomLI144V and MomLV149A. These two mutants exhibited enhanced activities and blocked the production of pathogenic factors of Pectobacterium carotovorum subsp. carotovorum (Pcc). Besides, seven amino acids which are vital for MomL enzyme activity were identified. Substitutions of these amino acids (E238G/K205E/L254R) in MomL led to almost complete loss of its QQ activity. We then tested the effect of MomL and its mutants on Pcc-infected Chinese cabbage. The results indicated that MomL and its mutants (MomLL254R, MomLI144V, MomLV149A) significantly decreased the pathogenicity of Pcc. This study provides an efficient method for QQ enzyme modification and gives us new clues for further investigation on the catalytic mechanism of QQ lactonase.
Asunto(s)
Aminoácidos/análisis , Hidrolasas de Éster Carboxílico , Pectobacterium carotovorum/enzimología , Pectobacterium carotovorum/genética , Ingeniería de Proteínas , Sustitución de Aminoácidos , Brassica rapa/microbiología , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Activación Enzimática/genética , Mutación , Pectobacterium carotovorum/patogenicidad , Virulencia/genéticaRESUMEN
Hfq is a RNA chaperone and participates in a wide range of cellular processes and pathways. In this study, mutation of hfq gene from Pectobacterium carotovorum subsp. carotovorum PccS1 led to significantly reduced virulence and plant cell wall-degrading enzyme (PCWDE) activities. In addition, the mutant exhibited decreased biofilm formation and motility and greatly attenuated carbapenem production as well as secretion of hemolysin coregulated protein (Hcp) as compared with wild-type strain PccS1. Moreover, a higher level of callose deposition was induced in Nicotiana benthamiana leaves when infiltrated with the mutant. A total of 26 small (s)RNA deletion mutants were obtained among a predicted 27 sRNAs, and three mutants exhibited reduced virulence in the host plant. These results suggest that hfq plays a key role in Pectobacterium virulence by positively impacting PCWDE production, secretion of the type VI secretion system, bacterial competition, and suppression of host plant responses.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Calla (Planta)/microbiología , Proteína de Factor 1 del Huésped/metabolismo , Pectobacterium carotovorum/enzimología , Enfermedades de las Plantas/microbiología , Sistemas de Secreción Tipo VI/metabolismo , Secuencia de Aminoácidos , Calla (Planta)/inmunología , Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucanos/metabolismo , Proteína de Factor 1 del Huésped/genética , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidad , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Alineación de Secuencia , Sistemas de Secreción Tipo VI/genética , VirulenciaRESUMEN
Nitrile reductases are considered to be promising and environmentally benign nitrile-reducing biocatalysts to replace traditional metal catalysts. Unfortunately, the catalytic efficiencies of the nitrile reductases reported so far are very low. To date, all attempts to increase the catalytic activity of nitrile reductases by protein engineering have failed. In this work, we successfully increased the specific activity of a nitrile reductase from Pectobacterium carotovorum from 354 to 526â U gprot-1 by engineering the substrate binding pocket; moreover, the thermostability was also improved (≈2-fold), showing half-lives of 140 and 32â h at 30 and 40 °C, respectively. In the bioreduction of 2-amino-5-cyanopyrrolo[2,3-d]pyrimidin-4-one (preQ0 ) to 2-amino-5-aminomethylpyrrolo[2,3-d]pyrimidin-4-one (preQ1 ), the variant was advantageous over the wild-type enzyme with a higher reaction rate and complete conversion of the substrate within a shorter period. Homology modeling and docking analysis revealed some possible origins of the increased activity and stability. These results establish a solid basis for future engineering of nitrile reductases to increase the catalytic efficiency further, which is a prerequisite for applying these novel biocatalysts in synthetic chemistry.
Asunto(s)
Nitrilos/metabolismo , Oxidorreductasas/metabolismo , Pectobacterium carotovorum/enzimología , Sitios de Unión , Dominio Catalítico , Evolución Molecular Dirigida , Estabilidad de Enzimas , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Pectobacterium carotovorum/química , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/metabolismo , Mutación Puntual , Ingeniería de Proteínas , Pirimidinas/metabolismo , Pirroles/metabolismo , Especificidad por SustratoRESUMEN
The effect of dissolved oxygen (DO) level and pH (controlled/uncontrolled) was first studied to enhance the production of novel glutaminase-free L-asparaginase by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor. The optimum level of DO was found to be 20%. The production of L-asparaginase was found to be maximum when pH of the medium was maintained at 8.5 after 12 h of fermentation. Under these conditions, P. carotovorum produced 17.97 U/mL of L-asparaginase corresponding to the productivity of 1497.50 U/L/h. The production of L-asparaginase was studied in fed-batch bioreactor by feeding L-asparagine (essential substrate for production) and/or glucose (carbon source for growth) at the end of the reaction period of 12 h. The initial medium containing both L-asparagine and glucose in the batch mode and L-asparagine in the feeding stream was found to be the best combination for enhanced production of glutaminase-free L-asparaginase. Under this condition, the L-asparaginase production was increased to 38.8 U/mL, which corresponded to a productivity of 1615.8 U/L/h. The production and productivity were increased by 115.8% and 7.9%, respectively, both of which are higher than those obtained in the batch bioreactor experiments.
Asunto(s)
Asparaginasa/biosíntesis , Reactores Biológicos , Pectobacterium carotovorum/enzimología , Asparaginasa/metabolismo , Medios de Cultivo , Glutaminasa/metabolismoRESUMEN
N-hydroxysuccinimide ester of monomethoxy polyethylene glycol hemisuccinate was synthesized. It acylated amino groups in a molecule of recombinant L-asparaginase from Erwinia carotovora. A method of L-asparaginase modification by the obtained activated polyethylene glycol derivative was developed. The best results were produced by modification of the enzyme with a 25-fold excess of reagent relative to the enzyme tetramer. The modified L-asparaginase was isolated from the reaction mixture by gel filtration on Sepharose CL-6B. The purified bioconjugate did not contain PEG unbound to the protein, demonstrated high catalytic activity, and exhibited antiproliferative action on cell cultures.
Asunto(s)
Antineoplásicos Fitogénicos/química , Asparaginasa/química , Proteínas Bacterianas/química , Pectobacterium carotovorum/química , Polietilenglicoles/química , Antineoplásicos Fitogénicos/biosíntesis , Antineoplásicos Fitogénicos/farmacología , Asparaginasa/biosíntesis , Asparaginasa/genética , Asparaginasa/farmacología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Supervivencia Celular/efectos de los fármacos , Cromatografía en Gel , Clonación Molecular , Reactivos de Enlaces Cruzados/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HL-60 , Humanos , Células Jurkat , Células K562 , Pectobacterium carotovorum/enzimología , Polietilenglicoles/farmacología , Ingeniería de Proteínas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Succinimidas/químicaRESUMEN
Bacteria sense their environment to alter phenotypes, including biofilm formation, to survive changing conditions. Heme proteins play important roles in sensing the bacterial gaseous environment and controlling the switch between motile and sessile (biofilm) states. Globin coupled sensors (GCS), a family of heme proteins consisting of a globin domain linked by a central domain to an output domain, are often found with diguanylate cyclase output domains that synthesize c-di-GMP, a major regulator of biofilm formation. Characterization of diguanylate cyclase-containing GCS proteins from Bordetella pertussis and Pectobacterium carotovorum demonstrated that cyclase activity is controlled by ligand binding to the heme within the globin domain. Both O2 binding to the heme within the globin domain and c-di-GMP binding to a product-binding inhibitory site (I-site) within the cyclase domain control oligomerization states of the enzymes. Changes in oligomerization state caused by c-di-GMP binding to the I-site also affect O2 kinetics within the globin domain, suggesting that shifting the oligomer equilibrium leads to broad rearrangements throughout the protein. In addition, mutations within the I-site that eliminate product inhibition result in changes to the accessible oligomerization states and decreased catalytic activity. These studies provide insight into the mechanism by which ligand binding to the heme and I-site controls activity of GCS proteins and suggests a role for oligomerization-dependent activity in vivo.
Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Globinas/metabolismo , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Biocatálisis , Biopelículas , Bordetella pertussis/enzimología , Bordetella pertussis/metabolismo , Bordetella pertussis/fisiología , GMP Cíclico/química , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Globinas/química , Globinas/genética , Hemo/química , Hemo/metabolismo , Hemoproteínas/química , Hemoproteínas/genética , Cinética , Modelos Moleculares , Mutación , Oxígeno/química , Pectobacterium carotovorum/enzimología , Pectobacterium carotovorum/metabolismo , Pectobacterium carotovorum/fisiología , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Homología de Secuencia de AminoácidoRESUMEN
Short-chain dehydrogenase/reductase (SDR) is distributed in many organisms, from bacteria to humans, and has significant roles in metabolism of carbohydrates, lipids, amino acids, and other biomolecules. An important intermediate in acidic polysaccharide metabolism is 2-keto-3-deoxy-d-gluconate (KDG). Recently, two short and long loops in Sphingomonas KDG-producing SDR enzymes (NADPH-dependent A1-R and NADH-dependent A1-R') involved in alginate metabolism were shown to be crucial for NADPH or NADH coenzyme specificity. Two SDR family enzymes-KduD from Pectobacterium carotovorum (PcaKduD) and DhuD from Streptococcus pyogenes (SpyDhuD)-prefer NADH as coenzyme, although only PcaKduD can utilize both NADPH and NADH. Both enzymes reduce 2,5-diketo-3-deoxy-d-gluconate to produce KDG. Tertiary and quaternary structures of SpyDhuD and PcaKduD and its complex with NADH were determined at high resolution (approximately 1.6 Å) by X-ray crystallography. Both PcaKduD and SpyDhuD consist of a three-layered structure, α/ß/α, with a coenzyme-binding site in the Rossmann fold; similar to enzymes A1-R and A1-R', both arrange the two short and long loops close to the coenzyme-binding site. The primary structures of the two loops in PcaKduD and SpyDhuD were similar to those in A1-R' but not A1-R. Charge neutrality and moderate space at the binding site of the nucleoside ribose 2' coenzyme region were determined to be structurally crucial for dual-coenzyme specificity in PcaKduD by structural comparison of the NADH- and NADPH-specific SDR enzymes. The corresponding site in SpyDhuD was negatively charged and spatially shallow. This is the first reported study on structural determinants in SDR family KduD related to dual-coenzyme specificity. Proteins 2016; 84:934-947. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Deshidrogenasas de Carbohidratos/química , Deshidrogenasas de Carbohidratos/metabolismo , Pectobacterium carotovorum/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Gluconatos/metabolismo , Modelos Moleculares , NAD/metabolismo , Pectobacterium carotovorum/química , Pectobacterium carotovorum/metabolismo , Conformación Proteica , Alineación de Secuencia , Streptococcus pyogenes/química , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/metabolismo , Especificidad por SustratoRESUMEN
BACKGROUND: E.coli type II L-asparaginase is widely used for treatment of acute lymphoblastic leukemia. However, serious side effects such as allergic or hypersensitivity reactions are common for L-asparaginase treatment. Methods for minimizing immune response on L-asparaginase treatment in human include bioengeneering of less immunogenic version of the enzyme or utilizing the homologous enzymes of different origin. To rationalize these approaches we compared immunogenicity of L-asparaginases from five bacterial organisms and performed sequence-structure analysis of the presumable epitope regions. METHODS: IgG and IgM immune response in C57B16 mice after immunization with Wollinella succinogenes type II (WsA), Yersinia pseudotuberculosis type II (YpA), Erwinia carotovora type II (EwA), and Rhodospirillum rubrum type I (RrA) and Escherichia coli type II (EcA) L-asparaginases was evaluated using standard ELISA method. The comparative bioinformatics analysis of structure and sequence of the bacterial L-asparaginases presumable epitope regions was performed. RESULTS: We showed different immunogenic properties of five studied L-asparaginases and confirmed the possibility of replacement of EcA with L-asparaginase from different origin as a second-line treatment. Studied L-asparaginases might be placed in the following order based on the immunogenicity level: YpA > RrA, WsA ≥ EwA > EcA. Most significant cross-immunogenicity was shown between EcA and YpA. We propose that a long N-terminus of YpA enzyme enriched with charged aminoacids and tryptophan could be a reason of higher immunogenicity of YpA in comparison with other considered enzymes. Although the recognized structural and sequence differences in putative epitope regions among five considered L-asparaginases does not fully explain experimental observation of the immunogenicity of the enzymes, the performed analysis set the foundation for further research in this direction. CONCLUSIONS: The performed studies showed different immunogenic properties of L-asparaginases and confirmed the possibility of replacement of EcA with L-asparaginase from different origin. The preferable enzymes for the second line treatment are WsA, RrA, or EwA.
Asunto(s)
Asparaginasa/inmunología , Hipersensibilidad a las Drogas/inmunología , Epítopos/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Secuencia de Aminoácidos/genética , Animales , Asparaginasa/administración & dosificación , Asparaginasa/efectos adversos , Asparaginasa/química , Línea Celular Tumoral , Hipersensibilidad a las Drogas/genética , Epítopos/genética , Escherichia coli/enzimología , Escherichia coli/genética , Ingeniería Genética , Humanos , Ratones , Pectobacterium carotovorum/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Rhodospirillum rubrum/enzimología , Yersinia/enzimologíaRESUMEN
Conjugation with the new branched copolymers, PEG-chitosan and glycol-chitosan, is suggested to improve the therapeutic properties of L-asparaginase from Erwinia carotovora (EwA). The structure and composition of such conjugates were optimized for maximal catalytic efficiency (kcat/KM) under physiological conditions, yielding improvement by a factor of 3-6 compared to the native enzyme. This effect is attributed mainly to the shift of pH activity profile towards lower pH values due to the polycationic nature of the copolymer. The thermostability of EwA conjugates was also considerably improved. Chito-PEGylation, similarly to PEGylation, can be expected to improve pharmacokinetic properties and to reduce immunogenicity of this medically relevant enzyme. It is worth mentioning that a new versatile approach based on IR spectroscopy has been developed to determine PEG-chitosan copolymer composition as well as composition of copolymer-enzyme conjugates. The proposed analytic method is "reagent-free" and allows fast and reliable determination of parameters of interest from the single IR spectrum in contrast to laborious and unreliable methods based on polymer free amino group titration with TNBS and OPA.
Asunto(s)
Antineoplásicos/química , Asparaginasa/química , Proteínas Bacterianas/química , Quitosano/análogos & derivados , Quitosano/química , Pectobacterium carotovorum/enzimología , Polietilenglicoles/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Asparaginasa/genética , Asparaginasa/aislamiento & purificación , Asparaginasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificaciónRESUMEN
Gene encoding glutaminase-free L-asparaginase II (ans B2) from Pectobacterium carotovorum MTCC 1428 was cloned into pHT43, transformed in Bacillus subtilis WB800N and optimised the expression levels of recombinant enzyme. A three-fold higher enzyme production was observed with an efficient transformant as compared to native strain. Enzyme localization studies revealed that >90% of recombinant enzyme is secreted extracellularly, a little fraction is attached to the membrane (>6%) and localised intracellularly (3%). The expression of recombinant L-asparaginase II was confirmed by SDS-PAGE, IMAC (Immobilised metal ion affinity chromatography) purification followed by Western blotting. Process parameter optimization with OFAT (one factor at a time) revealed that rpm (120), temperature (37 °C), Isopropyl ß-D-1-thiogalactopyranoside (IPTG) concentration (1 mM) and time of induction (0.8 OD600nm) plays a vital role where a maximum of 55 IU/ml was achieved. Further, consecutive induction by IPTG improved the enzyme production up to 105 IU/ml with a specific activity of 101 IU/mg of protein. Molecular modelling analysis depicted that amino acids, GLY60, GLY119 and ALA252 in the active site are responsible for the glutaminase free L-asparaginase II activity. This is the first report on enhanced expression of recombinant glutaminase-free L-asparaginase II by intermediate addition of IPTG.
Asunto(s)
Asparaginasa/biosíntesis , Bacillus subtilis/metabolismo , Proteínas Bacterianas/biosíntesis , Expresión Génica , Pectobacterium carotovorum/genética , Asparaginasa/genética , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Pectobacterium carotovorum/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genéticaRESUMEN
Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns. Prt1 is an autoprocessing protease with an N-terminal signal pre-peptide and a pro-peptide which has to be removed in order to activate the protease. The sequential cleavage of the N-terminus was confirmed by mass spectrometry (MS) fingerprinting and N-terminus analysis. The optimal reaction conditions for the activity of Prt1 on azocasein were at pH 6.0, 50 °C. At these reaction conditions, K M was 1.81 mg/mL and k cat was 1.82 × 10(7) U M(-1). The enzyme was relatively stable at 50 °C with a half-life of 20 min. Ethylenediaminetetraacetic acid (EDTA) treatment abolished activity; Zn(2+) addition caused regain of the activity, but Zn(2+)addition decreased the thermal stability of the Prt1 enzyme presumably as a result of increased proteolytic autolysis. In addition to casein, the enzyme catalyzed degradation of collagen, potato lectin, and plant extensin. Analysis of the cleavage pattern of different substrates after treatment with Prt1 indicated that the protease had a substrate cleavage preference for proline in substrate residue position P1 followed by a hydrophobic residue in residue position P1' at the cleavage point. The activity of Prt1 against plant cell wall structural proteins suggests that this enzyme might become an important new addition to the toolbox of cell-wall-degrading enzymes for biomass processing.
Asunto(s)
Metaloendopeptidasas/metabolismo , Pectobacterium carotovorum/enzimología , Procesamiento Proteico-Postraduccional , Cationes Bivalentes/metabolismo , Clonación Molecular , ADN Bacteriano/química , ADN Bacteriano/genética , Activadores de Enzimas/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Metaloendopeptidasas/química , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Especificidad por Sustrato , Temperatura , Zinc/metabolismoRESUMEN
AIM: Evaluate immune response in mice against various L-asparaginases and determine their cross-immunogenicity. MATERIALS AND METHODS: The studies were carried out in C57Bl(6j) line mice. Immunogenicity of L-asparaginases was studied: Escherichia coli type II (recombinant) (Medak, Germany) (EcA); Erwinia carotovora type II (ErA); Yersinia pseudotuberculosis type II (YpA); Rhodospirillum rubrum type I (RrA); Wollinella succinogenes type II (WsA). Immune response against the administered antigens was determined in EIA. RESULTS: Y. pseudotuberculosis L-asparaginase was the most immunogenic, E. coli--the least immunogenic. E. carotovora, R. rubrum, W. succinogenes asparaginases displayed intermediate immunogenicity. The results of cross-immunogenicity evaluation have established, that blood sera of mice, that had received YpA, showed cross-immunogenicity against all the other L-asparaginase preparations except E. carotovora. During immunization with E. coli L-asparaginase the developed antibodies also bound preparation from E. carotovora. Sera from mice immunized with W. succinogenes, E. carotovora and R. rubrum L-asparaginases had cross-reaction only with EcA and did not react with other preparations. CONCLUSION: Cross-immunogenicity of the studied L-asparaginases was determined. A sequence of administration of the studied preparation is proposed that allows to minimize L-asparaginase neutralization by cross-reacting antibodies.
Asunto(s)
Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Asparaginasa/inmunología , Proteínas Bacterianas/inmunología , Animales , Especificidad de Anticuerpos , Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/aislamiento & purificación , Asparaginasa/administración & dosificación , Asparaginasa/aislamiento & purificación , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/aislamiento & purificación , Reacciones Cruzadas , Escherichia coli/química , Escherichia coli/enzimología , Sueros Inmunes , Ratones , Ratones Endogámicos C57BL , Pectobacterium carotovorum/química , Pectobacterium carotovorum/enzimología , Rhodospirillum rubrum/química , Rhodospirillum rubrum/enzimología , Wolinella/química , Wolinella/enzimología , Yersinia pseudotuberculosis/química , Yersinia pseudotuberculosis/enzimologíaRESUMEN
Numerous functions in pathogenic Pectobacterium are regulated by quorum sensing (QS). Two different aiiA genes isolated from Bacillus sp. A24(aiiAA24) and Bacillus sp. DMS133(aiiADMS133) were used. Both genes encode acyl-homoserine lactonase (AiiA), which disrupts QS in Pectobacterium. To investigate the effect of different AiiAs on the inhibition of Pectobacterium carotovorum pathogenicity, two aiiA genes from different Bacillus strains were cloned and the resulting plasmids pME6863 (aiiAA24) and pME7080 (aiiADMS133) were transformed into P. carotovorum EMPCC cells. The effects of different lactonases on virulence features such as enzymatic activity, twitching and swimming motilities, and production of pellicle and biofilm formation were investigated. In EMPCC/pME6863, twitching and swimming motilities, and pellicle production were significantly reduced compared with EMPCC/pME7080. Quantitative real-time PCR (qRT-PCR) was used to measure virulence gene expression in transformed cells compared with expression levels in wild-type EMPCC. The expression of peh and hrpL genes was greatly reduced in EMPCC/pME6863 compared with EMPCC/pME7080. The sequence alignment and molecular dynamic modeling of two different AiiAA24 and AiiADMS133 proteins suggested that the replacement of proline 210 from AiiAA24 to serine in AiiADMS133 caused the reduction of enzyme activity in AiiADMS133.
Asunto(s)
Bacillus , Proteínas Bacterianas , Hidrolasas de Éster Carboxílico , Percepción de Quorum , Bacillus/genética , Bacillus/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Biopelículas/crecimiento & desarrollo , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/enzimología , Pectobacterium carotovorum/patogenicidad , Virulencia , Regulación Bacteriana de la Expresión Génica , Clonación Molecular , MetaloendopeptidasasRESUMEN
Bacteria use the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter c-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O2-dependent signaling in PccGCS, a GCS protein from Pectobacterium carotovorum, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length PccGCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O2 binding modulates activity of diguanylate cyclase-containing GCS proteins.
Asunto(s)
Proteínas Bacterianas , Hemo , Pectobacterium carotovorum , Liasas de Fósforo-Oxígeno , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pectobacterium carotovorum/enzimología , Conformación Proteica , Oxígeno/química , Oxígeno/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Proteínas de Escherichia coliRESUMEN
Heme-based sensor proteins are used by organisms to control signaling and physiological effects in response to their gaseous environment. Globin-coupled sensors (GCS) are oxygen-sensing proteins that are widely distributed in bacteria. These proteins consist of a heme globin domain linked by a middle domain to various output domains, including diguanylate cyclase domains, which are responsible for synthesizing c-di-GMP, a bacterial second messenger crucial for regulating biofilm formation. To understand the roles of heme pocket residues in controlling activity of the diguanylate cyclase domain, variants of the Pectobacterium carotovorum GCS (PccGCS) were characterized by enzyme kinetics and resonance Raman (rR) spectroscopy. Results of these studies have identified roles for hydrogen bonding and heme edge residues in modulating heme pocket conformation and flexibility. Better understanding of the ligand-dependent GCS signaling mechanism and the residues involved may allow for future development of methods to control O2-dependent c-di-GMP production.
Asunto(s)
Proteínas Bacterianas , Hemo , Enlace de Hidrógeno , Pectobacterium carotovorum , Liasas de Fósforo-Oxígeno , Espectrometría Raman , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Espectrometría Raman/métodos , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pectobacterium carotovorum/enzimología , Globinas/química , Globinas/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/química , Proteínas de Escherichia coliRESUMEN
The carbapenem class of ß-lactam antibiotics is known for its remarkable potency, antibacterial spectrum, and resistance to ß-lactamase-mediated inactivation. While the biosynthesis of structurally "complex" carbapenems, such as thienamycin, share initial biochemical steps with carbapenem-3-carboxylate ("simple" carbapenem), the requisite inversion at C5 and formation of the characteristic α,ß-unsaturated carboxylate are different in origin between the two groups. Here, we consider carbapenem synthase, a mechanistically distinct bifunctional non-heme iron α-ketoglutarate-dependent enzyme responsible for the terminal reactions, C5 epimerization and desaturation, in simple carbapenem production. Interestingly, this enzyme accepts two stereoisomeric substrates and transforms each to a common active antibiotic. Owing both to enzyme and product instability, resorting to saturation mutagenesis of active site and selected second-sphere residues gave clearly differing profiles of CarC tolerance to structural modification. Guided by a crystal structure and the mutational data, in silico docking was used to suggest the positioning of each disastereomeric substrate in the active site. The two orientations relative to the reactive iron-oxo center are manifest in the two distinct reactions, C5-epimerization and C2/3-desaturation. These observations favor a two-step reaction scheme involving two complete oxidative cycles as opposed to a single catalytic cycle in which an active site tyrosine, Tyr67, after hydrogen donation to achieve bicyclic ring inversion, is further hypothesized to serve as a radical carrier.