Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nano Lett ; 24(15): 4354-4361, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563599

RESUMEN

The recent focus of cancer therapeutics research revolves around modulating the immunosuppressive tumor microenvironment (TME) to enhance efficacy. The tumor stroma, primarily composed of cancer-associated fibroblasts (CAFs), poses significant obstacles to therapeutic penetration, influencing resistance and tumor progression. Reprogramming CAFs into an inactivated state has emerged as a promising strategy, necessitating innovative approaches. This study pioneers the design of a nanoformulation using pioglitazone, a Food and Drug Administration-approved anti-diabetic drug, to reprogram CAFs in the breast cancer TME. Glutathione (GSH)-responsive dendritic mesoporous organosilica nanoparticles loaded with pioglitazone (DMON-P) are designed for the delivery of cargo to the GSH-rich cytosol of CAFs. DMON-P facilitates pioglitazone-mediated CAF reprogramming, enhancing the penetration of doxorubicin (Dox), a therapeutic drug. Treatment with DMON-P results in the downregulation of CAF biomarkers and inhibits tumor growth through the effective delivery of Dox. This innovative approach holds promise as an alternative strategy for enhancing therapeutic outcomes in CAF-abundant tumors, particularly in breast cancer.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Nanopartículas , Humanos , Femenino , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Microambiente Tumoral
2.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R25-R34, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682243

RESUMEN

Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 V̇o2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.


Asunto(s)
Altitud , Estudios Cruzados , Ejercicio Físico , Glucosa , Hipoglucemiantes , Oxidación-Reducción , Pioglitazona , Humanos , Pioglitazona/administración & dosificación , Pioglitazona/farmacología , Masculino , Adulto Joven , Ejercicio Físico/fisiología , Adulto , Glucosa/metabolismo , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/farmacocinética , Tasa de Depuración Metabólica , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Insulina/sangre , Insulina/metabolismo
3.
Mol Psychiatry ; 28(8): 3373-3383, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37491462

RESUMEN

Patients diagnosed with fetal alcohol spectrum disorder (FASD) show persistent cognitive disabilities, including memory deficits. However, the neurobiological substrates underlying these deficits remain unclear. Here, we show that prenatal and lactation alcohol exposure (PLAE) in mice induces FASD-like memory impairments. This is accompanied by a reduction of N-acylethanolamines (NAEs) and peroxisome proliferator-activated receptor gamma (PPAR-γ) in the hippocampus specifically in a childhood-like period (at post-natal day (PD) 25). To determine their role in memory deficits, two pharmacological approaches were performed during this specific period of early life. Thus, memory performance was tested after the repeated administration (from PD25 to PD34) of: i) URB597, to increase NAEs, with GW9662, a PPAR-γ antagonist; ii) pioglitazone, a PPAR-γ agonist. We observed that URB597 suppresses PLAE-induced memory deficits through a PPAR-γ dependent mechanism, since its effects are prevented by GW9662. Direct PPAR-γ activation, using pioglitazone, also ameliorates memory impairments. Lastly, to further investigate the region and cellular specificity, we demonstrate that an early overexpression of PPAR-γ, by means of a viral vector, in hippocampal astrocytes mitigates memory deficits induced by PLAE. Together, our data reveal that disruptions of PPAR-γ signaling during neurodevelopment contribute to PLAE-induced memory dysfunction. In turn, PPAR-γ activation during a childhood-like period is a promising therapeutic approach for memory deficits in the context of early alcohol exposure. Thus, these findings contribute to the gaining insight into the mechanisms that might underlie memory impairments in FASD patients.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Tiazolidinedionas , Embarazo , Femenino , Humanos , Ratones , Animales , Niño , PPAR gamma , Pioglitazona/farmacología , Lactancia , Trastornos de la Memoria/tratamiento farmacológico , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico
4.
Molecules ; 29(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38731628

RESUMEN

Fluorescence lifetime imaging microscopy (FLIM) has proven to be a useful method for analyzing various aspects of material science and biology, like the supramolecular organization of (slightly) fluorescent compounds or the metabolic activity in non-labeled cells; in particular, FLIM phasor analysis (phasor-FLIM) has the potential for an intuitive representation of complex fluorescence decays and therefore of the analyzed properties. Here we present and make available tools to fully exploit this potential, in particular by coding via hue, saturation, and intensity the phasor positions and their weights both in the phasor plot and in the microscope image. We apply these tools to analyze FLIM data acquired via two-photon microscopy to visualize: (i) different phases of the drug pioglitazone (PGZ) in solutions and/or crystals, (ii) the position in the phasor plot of non-labelled poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), and (iii) the effect of PGZ or PGZ-containing NPs on the metabolism of insulinoma (INS-1 E) model cells. PGZ is recognized for its efficacy in addressing insulin resistance and hyperglycemia in type 2 diabetes mellitus, and polymeric nanoparticles offer versatile platforms for drug delivery due to their biocompatibility and controlled release kinetics. This study lays the foundation for a better understanding via phasor-FLIM of the organization and effects of drugs, in particular, PGZ, within NPs, aiming at better control of encapsulation and pharmacokinetics, and potentially at novel anti-diabetics theragnostic nanotools.


Asunto(s)
Nanopartículas , Pioglitazona , Pioglitazona/farmacología , Pioglitazona/química , Nanopartículas/química , Animales , Línea Celular Tumoral , Humanos , Microscopía Fluorescente/métodos , Ratas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química
5.
J Cell Biochem ; 124(8): 1145-1154, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37393598

RESUMEN

As a master transcription factor, c-Myc plays an important role in promoting tumor immune escape. In addition, PPARγ (peroxisome proliferator-activated receptor γ) regulates cell metabolism, inflammation, and tumor progression, while the effect of PPARγ on c-Myc-mediated tumor immune escape is still unclear. Here we found that cells treated with PPARγ agonist pioglitazone (PIOG) reduced c-Myc protein expression in a PPARγ-dependent manner. qPCR analysis showed that PIOG had no significant effect on c-Myc gene levels. Further analysis showed that PIOG decreased c-Myc protein half-life. Moreover, PIOG increased the binding of c-Myc to PPARγ, and induced c-Myc ubiquitination and degradation. Importantly, c-Myc increased PD-L1 and CD47 immune checkpoint protein expression and promoted tumor immune escape, while PIOG inhibited this event. These findings suggest that PPARγ agonist inhibited c-Myc-mediated tumor immune escape by inducing its ubiquitination and degradation.


Asunto(s)
Neoplasias Colorrectales , Pioglitazona , Tiazolidinedionas , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Regulación de la Expresión Génica , Pioglitazona/farmacología , PPAR gamma/agonistas , PPAR gamma/metabolismo , Tiazolidinedionas/farmacología , Escape del Tumor , Proteínas Proto-Oncogénicas c-myc/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/metabolismo
6.
Am J Physiol Endocrinol Metab ; 324(4): E358-E373, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856189

RESUMEN

Cold acclimation and pharmacological peroxisome proliferator-activated receptor γ (PPARγ) activation have each earlier been shown to recruit brown adipose tissue (BAT) and beige adipocytes thermogenic machinery, enhancing uncoupling protein 1 (UCP1)-mediated thermogenic capacity. We here investigated whether cold acclimation and PPARγ agonism combined have additive effects in inducing brown and beige adipocytes UCP1 content and whether this translates into a higher thermogenic capacity and energy expenditure. C57BL/6J mice treated or not with pioglitazone (30 mg/kg/day) were maintained at 21°C or exposed to cold (7°C) for 15 days and evaluated for thermogenic capacity, energy expenditure and interscapular BAT (iBAT) and inguinal white adipose tissue (iWAT) mass, morphology, UCP1 content and gene expression, glucose uptake and oxygen consumption. Cold acclimation and PPARγ agonism combined synergistically increased iBAT and iWAT total UCP1 content and mRNA levels of the thermogenesis-related proteins PGC1a, CIDEA, FABP4, GYK, PPARa, LPL, GLUTs (GLUT1 in iBAT and GLUT4 in iWAT), and ATG when compared to cold and pioglitazone individually. This translated into a stronger increase in body temperature in response to the ß3-adrenergic agonist CL316,243 and iBAT and iWAT respiration induced by succinate and pyruvate in comparison to that seen in either cold-acclimated or pioglitazone-treated mice. However, basal energy expenditure, BAT glucose uptake and glucose tolerance were not increased above that seen in cold-acclimated untreated mice. In conclusion, cold acclimation and PPARγ agonism combined induced a robust increase in brown and beige adipocytes UCP1 content and thermogenic capacity, much higher than each treatment individually. However, our findings enforce the concept that increases in total UCP1 do not innately lead to higher energy expenditure.NEW & NOTEWORTHY Cold acclimation and PPARγ agonism combined markedly increase brown and white adipose tissue total UCP1 content and mRNA levels of thermogenesis-related proteins. Higher UCP1 protein levels did not result in higher energy expenditure. The high thermogenic capacity induced by PPARγ agonism in cold-exposed animals markedly increases animals' body temperature in response to the ß3-adrenergic agonist CL316,243.


Asunto(s)
Tejido Adiposo Blanco , PPAR gamma , Ratones , Animales , Pioglitazona/farmacología , PPAR gamma/genética , PPAR gamma/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético/fisiología , Aclimatación/fisiología , Termogénesis , Glucosa/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Frío
7.
Biochem Biophys Res Commun ; 670: 79-86, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37285721

RESUMEN

BACKGROUND: Iron-sulfur clusters play a central role in cellular function and are regulated by the ATM protein. Iron-sulfur clusters are part of the cellular sulfide pool, which functions to maintain cardiovascular health, and consists of free hydrogen sulfide, iron-sulfur clusters, protein bound sulfides, which constitute the total cellular sulfide fraction. ATM protein signaling and the drug pioglitazone share some cellular effects, which led us to examine the effects of this drug on cellular iron-sulfur cluster formation. Additionally, as ATM functions in the cardiovasculature and its signaling may be diminished in cardiovascular disease, we examined pioglitazone in the same cell type, with and without ATM protein expression. METHODS: We examined the effects of pioglitazone treatment on the total cellular sulfide profile, the glutathione redox state, cystathionine gamma-lyase enzymatic activity, and on double-stranded DNA break formation in cells with and without ATM protein expression. RESULTS: Pioglitazone increased the acid-labile (iron-sulfur cluster) and bound sulfur cellular fractions and reduced cystathionine gamma-lyase enzymatic activity in cells with and without ATM protein expression. Interestingly, pioglitazone also increased reduced glutathione and lowered DNA damage in cells without ATM protein expression, but not in ATM wild-type cells. These results are interesting as the acid-labile (iron-sulfur cluster), bound sulfur cellular fractions, and reduced glutathione are low in cardiovascular disease. CONCLUSION: Here we found that pioglitazone increased the acid-labile (iron-sulfur cluster) and bound sulfur cellular fractions, impinges on hydrogen sulfide synthesis, and exerts beneficial effect on cells with deficient ATM protein signaling. Thus, we show a novel pharmacologic action for pioglitazone.


Asunto(s)
Enfermedades Cardiovasculares , Sulfuro de Hidrógeno , Proteínas Hierro-Azufre , Humanos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Pioglitazona/farmacología , Cistationina gamma-Liasa/metabolismo , Sulfuros/metabolismo , Azufre/metabolismo , Glutatión/metabolismo , Hierro/metabolismo
8.
Am J Pathol ; 192(5): 771-782, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35189097

RESUMEN

Macrophages aid in wound healing by changing their phenotype and can be a key driver of fibrosis. However, the contribution of macrophage phenotype to fibrosis following vocal fold injury remains unclear. Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed mainly by macrophages during early wound healing and regulates the macrophage phenotype. This study aimed to evaluate the effects of pioglitazone (PIO), a PPARγ agonist, on the macrophage phenotype and fibrosis following vocal fold injury in rats. PIO was injected into the rat vocal folds on days 1, 3, 5, and 7 after injury, and the vocal fold lamina propria was evaluated on days 4 and 56 after injury. Moreover, THP-1-derived macrophages were treated with PIO, and the expression of proinflammatory cytokines under lipopolysaccharide/interferon-γ stimulation was analyzed. PIO reduced the expression of Ccl2 both in vivo and in vitro. Furthermore, PIO decreased the density of inducible nitric oxide synthase+ CD68+ macrophages and inhibited the expression of fibrosis-related factors on day 4 after injury. On day 56 after injury, PIO inhibited fibrosis, tissue contracture, and hyaluronic acid loss in a PPARγ-dependent manner. These results indicate that PPARγ activation could inhibit accumulation of inflammatory macrophages and improve tissue repair. Taken together, these findings imply that inflammatory macrophages play a key role in vocal fold fibrosis.


Asunto(s)
PPAR gamma , Tiazolidinedionas , Animales , Fibrosis , Hipoglucemiantes/farmacología , Activación de Macrófagos , PPAR gamma/genética , Pioglitazona/farmacología , Ratas , Tiazolidinedionas/farmacología , Pliegues Vocales/metabolismo
9.
Pulm Pharmacol Ther ; 80: 102209, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36907545

RESUMEN

INTRODUCTION: Hyperoxia-induced lung injury is characterized by acute alveolar injury, disrupted epithelial-mesenchymal signaling, oxidative stress, and surfactant dysfunction, yet currently, there is no effective treatment. Although a combination of aerosolized pioglitazone (PGZ) and a synthetic lung surfactant (B-YL peptide, a surfactant protein B mimic) prevents hyperoxia-induced neonatal rat lung injury, whether it is also effective in preventing hyperoxia-induced adult lung injury is unknown. METHOD: Using adult mice lung explants, we characterize the effects of 24 and 72-h (h) exposure to hyperoxia on 1) perturbations in Wingless/Int (Wnt) and Transforming Growth Factor (TGF)-ß signaling pathways, which are critical mediators of lung injury, 2) aberrations of lung homeostasis and injury repair pathways, and 3) whether these hyperoxia-induced aberrations can be blocked by concomitant treatment with PGZ and B-YL combination. RESULTS: Our study reveals that hyperoxia exposure to adult mouse lung explants causes activation of Wnt (upregulation of key Wnt signaling intermediates ß-catenin and LEF-1) and TGF-ß (upregulation of key TGF-ß signaling intermediates TGF-ß type I receptor (ALK5) and SMAD 3) signaling pathways accompanied by an upregulation of myogenic proteins (calponin and fibronectin) and inflammatory cytokines (IL-6, IL-1ß, and TNFα), and alterations in key endothelial (VEGF-A and its receptor FLT-1, and PECAM-1) markers. All of these changes were largely mitigated by the PGZ + B-YL combination. CONCLUSION: The effectiveness of the PGZ + B-YL combination in blocking hyperoxia-induced adult mice lung injury ex-vivo is promising to be an effective therapeutic approach for adult lung injury in vivo.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Animales , Ratones , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Pulmón , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Lesión Pulmonar/metabolismo , Pioglitazona/farmacología , Pioglitazona/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Agonistas de PPAR-gamma , Tensoactivos/metabolismo , Tensoactivos/farmacología , Factor de Crecimiento Transformador beta/farmacología
10.
J Immunol ; 207(2): 483-492, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193599

RESUMEN

Alcohol use disorders (AUD) increase susceptibility to respiratory infections by 2- to 4-fold in part because of impaired alveolar macrophage (AM) immune function. Alcohol causes AM oxidative stress, diminishing AM phagocytic capacity and clearance of microbes from the alveolar space. Alcohol increases AM NADPH oxidases (Noxes), primary sources of AM oxidative stress, and reduces peroxisome proliferator-activated receptor γ (PPARγ) expression, a critical regulator of AM immune function. To investigate the underlying mechanisms of these alcohol-induced AM derangements, we hypothesized that alcohol stimulates CCAAT/enhancer-binding protein ß (C/EBPß) to suppress Nox-related microRNAs (miRs), thereby enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. Furthermore, we postulated that pharmacologic PPARγ activation with pioglitazone would inhibit C/EBPß and attenuate alcohol-induced AM dysfunction. AM isolated from human AUD subjects or otherwise healthy control subjects were examined. Compared with control AM, alcohol activated AM C/EBPß, decreased Nox1-related miR-1264 and Nox2-related miR-107, and increased Nox1, Nox2, and Nox4 expression and activity. These alcohol-induced AM derangements were abrogated by inhibition of C/EBPß, overexpression of miR-1264 or miR-107, or pioglitazone treatment. These findings define novel molecular mechanisms of alcohol-induced AM dysfunction mediated by C/EBPß and Nox-related miRs that are amenable to therapeutic targeting with PPARγ ligands. These results demonstrate that PPARγ ligands provide a novel and rapidly translatable strategy to mitigate susceptibility to respiratory infections and related morbidity in individuals with AUD.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Etanol/efectos adversos , Macrófagos Alveolares/efectos de los fármacos , Fagocitos/efectos de los fármacos , Pioglitazona/farmacología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , PPAR gamma/metabolismo , Fagocitos/metabolismo
11.
Mol Biol Rep ; 50(12): 10219-10233, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37934372

RESUMEN

BACKGROUND: Tamoxifen (TAM) is a chemotherapeutic drug widely utilized to treat breast cancer. On the other hand, it exerts deleterious cellular effects in clinical applications as an antineoplastic agent, such as liver damage and cirrhosis. TAM-induced hepatic toxicity is mainly attributed to oxidative stress and inflammation. Pioglitazone (PIO), a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist, is utilized to treat diabetes mellitus type-2. PIO has been reported to exert anti-inflammatory and antioxidant effects in different tissues. This research assessed the impact of PIO against TAM-induced hepatic intoxication. METHODS: Rats received PIO (10 mg/kg) and TAM (45 mg/kg) orally for 10 days. RESULTS: TAM increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT), triggered several histopathological alterations, NF-κB p65, increased hepatic oxidative stress, and pro-inflammatory cytokines. PIO protects against TAM-induced liver dysfunction, reduced malondialdehyde (MDA), and pro-inflammatory markers along with improved hepatic antioxidants. Moreover, PIO, increased hepatic Bcl-2 expression while reducing Bax expression and caspase-3 levels. In addition, PIO decreased Keap-1, Notch1, and Hes-1 while upregulated HO-1, Nrf2, and SIRT1. Molecular docking showed the binding affinity of PIO for Keap-1, NF-κB, and SIRT1. CONCLUSION: PIO mitigated TAM hepatotoxicity by decreasing apoptosis, inflammation, and oxidative stress. The protecting ability of PIO was accompanied by reducing Keap-1 and NF-κB and regulating Keap1/Nrf2/HO-1 and Sirt1/Notch1 signaling. A schematic diagram illustrating the protective effect of PIO against TAM hepatotoxicity. PIO prevented TAM-induced liver injury by regulating Nrf2/HO-1 and SIRT1/Notch1 signaling and mitigating oxidative stress, inflammation, and apoptosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías , Ratas , Animales , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Pioglitazona/farmacología , Pioglitazona/metabolismo , Pioglitazona/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal , Antioxidantes/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Inflamación/metabolismo , Hepatopatías/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
12.
J Biochem Mol Toxicol ; 37(6): e23350, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36988379

RESUMEN

Doxorubicin (DOX) is one of the basic anticancer drugs, nonetheless its use is restricted due to noxious side effects. Kidney failure is one of the main side effects that restrict its medical use. The current study assessed the nephroprotective effects of fenofibrate and pioglitazone against the renal injury induced by doxorubicin in rats and illustrated the probable mechanisms underlying these protective effects. For this purpose, Male Sprague-Dawley rats weighing (200-230 g) were allocated into seven groups treated for 15 days as following: control (50% corn oil + 50% DMSO p.o), fenofibrate (100 mg/kg p.o) and pioglitazone (10 mg/kg p.o) as well as four groups of DOX (15 mg/kg i.p on 11th day). DOX groups included DOX alone and DOX with protective drugs fenofibrate, pioglitazone or both of them. As a result of doxorubicin nephrotoxicity; serum creatinine and blood urea nitrogen were remarkably elevated. Moreover, renal glutathione was significantly reduced while tissue lipid peroxidation malondialdehyde, tumor necrosis factor-α, nuclear factor-kappa B p65 (NF-κB p65), interleukin-1ß, p38 mitogen activated protein kinase (p38-MAPK) and caspase-3 (Casp-3) were significantly augmented. Treatment with fenofibrate and pioglitazone either alone or in combination markedly attenuated DOX-induced injury by suppression of oxidative stress, inflammation and apoptosis. The above-mentioned biochemical markers were affirmed by histological assessment. In conclusion, fenofibrate, pioglitazone, and their combination possess potential prophylactic effects against doxorubicin-induced renal injury through modulation of p38-MAPK/NF-κB p65 pathway with superiority to the combination.


Asunto(s)
Fenofibrato , Insuficiencia Renal , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Pioglitazona/farmacología , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/farmacología , Fenofibrato/farmacología , Fenofibrato/metabolismo , Riñón , Doxorrubicina/efectos adversos , Estrés Oxidativo , Hipoglucemiantes/farmacología , Apoptosis
13.
Acta Pharmacol Sin ; 44(2): 454-464, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35918412

RESUMEN

Rheumatoid arthritis (RA) is characterized by synovial inflammation, synoviocyte expansion and damage to cartilage and bone. We recently reported that peroxisome proliferator-activated receptor (PPAR)-γ inhibited the proliferation and activation of fibroblast-like synoviocytes (FLS), and was downregulated in RA synovial. In this study we investigated the role of PPAR-γ in RA and the underlying mechanisms. Adjuvant-induced arthritis (AIA) was induced in rats; from D15, AIA rats were orally administered pioglitazone (30 mg·kg-1·d-1) or rosiglitazone (4 mg·kg-1·d-1) for 14 days. Collagen-induced arthritis (CIA) was induced in wild-type and Ppar-γ+/- mice. We showed that the expression of PPAR-γ was significantly reduced, whereas that of TNF-α was markedly increased in human RA FLS. In CIA mice, knockdown of PPAR-γ expression (Ppar-γ+/-) aggravated the ankle inflammation. Similarly, T0070907 (a PPAR-γ antagonist) or si-PPAR-γ promoted the activation and inflammation of TNF-α-induced FLS in vitro. On the contrary, administration of PPAR-γ agonist pioglitazone or rosiglitazone, or injection of ad-Ppar-γ into the ankle of AIA rat in vivo induced overexpression of PPAR-γ, reduced the paw swelling and inflammation, and downregulated activation and inflammation of FLS in RA. Interesting, injection of ad-Ppar-γ into the ankle also reversed the ankle inflammation in Ppar-γ+/- CIA mice. We conducted RNA-sequencing and KEGG pathway analysis, and revealed that PPAR-γ overexpression was closely related to p53 signaling pathway in TNF-α-induced FLS. Co-IP study confirmed that p53 protein was bound to PPAR-γ in RA FLS. Taken together, PPAR-γ alleviates the inflammatory response of TNF-α-induced FLS by binding p53 in RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Sinoviocitos , Ratas , Ratones , Humanos , Animales , Sinoviocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , PPAR gamma/metabolismo , Rosiglitazona/farmacología , Rosiglitazona/uso terapéutico , Rosiglitazona/metabolismo , Pioglitazona/farmacología , Pioglitazona/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proliferación Celular , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Membrana Sinovial/metabolismo
14.
Pharmacology ; 108(6): 565-575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37844554

RESUMEN

INTRODUCTION: Endothelial dysfunction (ED) plays a key role in the pathogenesis of diabetic vascular complications. In monotherapy, dapagliflozin (Dapa) as well as pioglitazone (Pio) prevent the progression of target organ damage in both type 1 (T1DM) and type 2 diabetes. We investigated whether the simultaneous PPAR-γ activation and SGLT2 cotransporter inhibition significantly alleviate ED-related pathological processes and thus normalize vascular response in experimental T1DM. METHODS: Experimental diabetes was induced by streptozotocin (STZ; 55 mg/kg, i.p.) in Wistar rats. Dapa (10 mg/kg), Pio (12 mg/kg), or their combination were administrated to the STZ rats orally. Six weeks after STZ administration, the aorta was excised for functional studies and real-time qPCR analysis. RESULTS: In the aorta of diabetic rats, impaired endothelium-dependent and independent relaxation were accompanied by the imbalance between vasoactive factors (eNos, Et1) and overexpression of inflammation (Tnfα, Il1b, Il6, Icam, Vcam) and oxidative stress (Cybb) markers. Pio monotherapy normalized response to vasoactive substances and restored balance between Et1-eNos expression, while Dapa treatment was ineffective. Nevertheless, Dapa and Pio monotherapy significantly reverted inflammation and oxidative stress markers to normal values. The combination treatment exhibited an additive effect in modulating Il6 expression, reaching the effect of Pio monotherapy in other measured parameters. CONCLUSION: Particularly, Pio exerts a vasoprotective character when used in monotherapy. When combined with Dapa, it does not exhibit an expected additive effect within modulating vasoreactivity or oxidative stress, though having a significant influence on IL6 downregulation.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratas , Animales , PPAR gamma/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Transportador 2 de Sodio-Glucosa , Interleucina-6/metabolismo , Ratas Wistar , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Inflamación , NADPH Oxidasa 2/metabolismo
15.
Zygote ; 31(1): 97-100, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36533329

RESUMEN

Polycystic ovary syndrome (PCOS) is a complex disorder in which the aetiology is still not explained very well. The PI3K/PTEN (phosphatidylinositol 3-kinase/phosphatase and tensin homolog deleted on chromosome 10) pathway is an important pathway that is involved in many mechanisms, including proliferation, growth and motility. PTEN plays a role in granulosa cell proliferation and regulates the differentiation process. The aim of this study was to investigate the expression levels of Pten and Pik3ca in PCOS mouse models with and without any treatment procedures. Three groups of mouse models, PCOS, a PCOS group with clomiphene citrate treatment, and a PCOS group with the combination of clomiphene citrate, metformin and pioglitazone treatment, were established. Ovarian tissues, which were obtained from these groups and a control group with no PCOS, were embedded in paraffin and RNA was extracted. cDNA was synthesized and real-time PCR was conducted to evaluate the expression levels of Pten and Pik3ca. The results of this study showed that both Pten and Pik3ca genes were expressed in the ovarian tissues from the mouse models. Although one-way analysis of variance results showed that Pten was expressed significantly differently in the samples, individual Student's t-tests did not show any significantly different expression levels in each group. This study is important as it shows the expression patterns of two genes in PCOS mouse models with different treatment strategies, including clomiphene citrate, metformin and pioglitazone. The results of this study formed the basis of research studies and investigations into different genes within the PTEN pathway, as well as other pathways that are under investigation.


Asunto(s)
Metformina , Síndrome del Ovario Poliquístico , Animales , Femenino , Ratones , Clomifeno , Metformina/farmacología , Oogénesis , Inducción de la Ovulación/métodos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Pioglitazona/farmacología , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Fosfohidrolasa PTEN/genética
16.
Am J Drug Alcohol Abuse ; 49(3): 345-358, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36345683

RESUMEN

Background: Hippocampal and cerebellar neuropathology occurs in individuals with alcohol use disorders (AUD), resulting in impaired cognitive and motor function.Objectives: Evaluate the effects of ethanol on the expression of pro- and anti-inflammatory molecules, as well as the effects of the anti-inflammatory PPAR-γ agonist pioglitazone in suppressing ethanol-induced neuroinflammation.Methods: Adult male and female mice were treated chronically with ethanol for just under a month followed by a single acute binge dose of ethanol. Animals were provided liquid diet in the absence of ethanol (Control; n = 18, 9 M/9F), liquid diet containing ethanol (ethanol; n = 22, 11 M/11F), or liquid diet containing ethanol plus gavage administration of 30.0 mg/kg pioglitazone (ethanol + pioglitazone; n = 20, 10 M/10F). The hippocampus and cerebellum were isolated 24 h following the binge dose of ethanol, mRNA was isolated, and pro- and anti-inflammatory molecules were quantified by qRT-PCR.Results: Ethanol significantly (p < .05) increased the expression of pro-inflammatory molecules IL-1ß, TNF-α, CCL2, and COX2; increased the expression of inflammasome-related molecules NLRP3 and Casp1 but decreased IL-18; and altered the expression of anti-inflammatory molecules including TGFßR1 in the hippocampus and cerebellum, though some differences were observed between males and females and the two brain regions. The anti-inflammatory pioglitazone inhibited ethanol-induced alterations in the expression of most, but not all, inflammation-related molecules.Conclusion: Chronic plus binge administration of ethanol induced the expression of inflammatory molecules in adult mice and pioglitazone suppressed ethanol-induced neuroinflammation.


Asunto(s)
Alcoholismo , Etanol , Ratones , Femenino , Masculino , Animales , Etanol/farmacología , Pioglitazona/metabolismo , Pioglitazona/farmacología , Enfermedades Neuroinflamatorias , Hipocampo , Cerebelo/metabolismo
17.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373253

RESUMEN

Neuroinflammation is one disease hallmark on the road to neurodegeneration in primary tauopathies. Thus, immunomodulation might be a suitable treatment strategy to delay or even prevent the occurrence of symptoms and thus relieve the burden for patients and caregivers. In recent years, the peroxisome proliferator-activated receptor γ (PPARγ) has received increasing attention as it is immediately involved in the regulation of the immune system and can be targeted by the anti-diabetic drug pioglitazone. Previous studies have shown significant immunomodulation in amyloid-ß (Aß) mouse models by pioglitazone. In this study, we performed long-term treatment over six months in P301S mice as a tauopathy model with either pioglitazone or placebo. We performed serial 18 kDa translocator protein positron-emission-tomography (TSPO-PET) imaging and terminal immunohistochemistry to assess microglial activation during treatment. Tau pathology was quantified via immunohistochemistry at the end of the study. Long-term pioglitazone treatment had no significant effect on TSPO-PET, immunohistochemistry read-outs of microglial activation, or tau pathology levels in P301S mice. Thus, we conclude that pioglitazone modifies the time course of Aß-dependent microglial activation, but does not significantly modulate microglial activation in response to tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Pioglitazona/farmacología , Microglía/metabolismo , Tauopatías/metabolismo , Péptidos beta-Amiloides/metabolismo , PPAR gamma/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/metabolismo
18.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958504

RESUMEN

Excessive renal TGF-ß production and pro-fibrotic miRNAs are important drivers of kidney fibrosis that lack any efficient treatment. Dysfunctional autophagy might play an important role in the pathogenesis. We aimed to study the yet unknown effects of peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone (Pio) on renal autophagy and miRNA dysregulation during fibrosis. Mouse primary tubular epithelial cells (PTEC) were isolated, pre-treated with 5 µM pioglitazone, and then stimulated with 10 ng/mL TGF-ß1 for 24 h. Male 10-week-old C57Bl6 control (CTL) and TGF-ß overexpressing mice were fed with regular chow (TGF) or Pio-containing chow (20 mg/kg/day) for 5 weeks (TGF + Pio). PTEC and kidneys were evaluated for mRNA and protein expression. In PTEC, pioglitazone attenuated (p < 0.05) the TGF-ß-induced up-regulation of Col1a1 (1.4-fold), Tgfb1 (2.2-fold), Ctgf (1.5-fold), Egr2 (2.5-fold) mRNAs, miR-130a (1.6-fold), and miR-199a (1.5-fold), inhibited epithelial-to-mesenchymal transition, and rescued autophagy function. In TGF mice, pioglitazone greatly improved kidney fibrosis and related dysfunctional autophagy (increased LC3-II/I ratio and reduced SQSTM1 protein content (p < 0.05)). These were accompanied by 5-fold, 3-fold, 12-fold, and 2-fold suppression (p < 0.05) of renal Ccl2, Il6, C3, and Lgals3 mRNA expression, respectively. Our results implicate that pioglitazone counteracts multiple pro-fibrotic processes in the kidney, including autophagy dysfunction and miRNA dysregulation.


Asunto(s)
Enfermedades Renales , MicroARNs , Masculino , Ratones , Animales , Pioglitazona/farmacología , Factor de Crecimiento Transformador beta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Riñón/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , ARN Mensajero/genética , Fibrosis , Autofagia , Células Epiteliales/metabolismo
19.
Molecules ; 28(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37959843

RESUMEN

Oxidative stress and neuroinflammation play a pivotal role in triggering the neurodegenerative pathological cascades which characterize neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. In search for potential efficient treatments for these pathologies, that are still considered unmet medical needs, we started from the promising properties of the antidiabetic drug pioglitazone, which has been repositioned as an MAO-B inhibitor, characterized by promising neuroprotective properties. Herein, with the aim to broaden its neuroprotective profile, we tried to enrich pioglitazone with direct and indirect antioxidant properties by hanging polyphenolic and electrophilic features that are able to trigger Nrf2 pathway and the resulting cytoprotective genes' transcription, as well as serve as radical scavengers. After a preliminary screening on MAO-B inhibitory properties, caffeic acid derivative 2 emerged as the best inhibitor for potency and selectivity over MAO-A, characterized by a reversible mechanism of inhibition. Furthermore, the same compound proved to activate Nrf2 pathway by potently increasing Nrf2 nuclear translocation and strongly reducing ROS content, both in physiological and stressed conditions. Although further biological investigations are required to fully clarify its neuroprotective properties, we were able to endow the pioglitazone scaffold with potent antioxidant properties, representing the starting point for potential future pioglitazone-based therapeutics for neurodegenerative disorders.


Asunto(s)
Antioxidantes , Enfermedades Neurodegenerativas , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Pioglitazona/farmacología , Estrés Oxidativo , Enfermedades Neurodegenerativas/metabolismo , Monoaminooxidasa/metabolismo
20.
Molecules ; 28(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375330

RESUMEN

Doxorubicin (DOX) is a chemotherapeutic agent that is linked with complications such as cardiotoxicity and cognitive dysfunction, known as chemobrain. Chemobrain affects up to 75% of cancer survivors, and there are no known therapeutic options for its treatment. This study aimed to determine the protective effect of pioglitazone (PIO) against DOX-induced cognitive impairment. Forty Wistar female rats were equally divided into four groups: control, DOX-treated, PIO-treated, and DOX + PIO-treated. DOX was administered at a dose of 5 mg/kg, i.p., twice a week for two weeks (cumulative dose, 20 mg/kg). PIO was dissolved in drinking water at a concentration of 2 mg/kg in the PIO and DOX-PIO groups. The survival rates, change in body weight, and behavioral assessment were performed using Y-maze, novel object recognition (NOR), and elevated plus maze (EPM), followed by estimation of neuroinflammatory cytokines IL-6, IL-1ß, and TNF-α in brain homogenate and RT-PCR of a brain sample. Our results showed a survival rate of 40% and 65% in the DOX and DOX + PIO groups, respectively, compared with a 100% survival rate in the control and PIO treatment groups at the end of day 14. There was an insignificant increase in body weight in the PIO group and a significant reduction in the DOX and DOX + PIO groups as compared with the control groups. DOX-treated animals exhibited impairment of cognitive function, and the combination PIO showed reversal of DOX-induced cognitive impairment. This was evidenced by changes in IL-1ß, TNF-α, and IL-6 levels and also by mRNA expression of TNF- α, and IL-6. In conclusion, PIO treatment produced a reversal of DOX-induced memory impairment by alleviating neuronal inflammation by modulating the expression of inflammatory cytokines.


Asunto(s)
Deterioro Cognitivo Relacionado con la Quimioterapia , Enfermedades Neuroinflamatorias , Ratas , Femenino , Animales , Pioglitazona/farmacología , Ratas Wistar , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-6/genética , Interleucina-6/farmacología , Doxorrubicina/farmacología , Citocinas/farmacología , Peso Corporal , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA