Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Mol Biol ; 114(4): 85, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995464

RESUMEN

Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.


Asunto(s)
Aciltransferasas , Proteínas F-Box , Regulación de la Expresión Génica de las Plantas , Fenilanina Amoníaco-Liasa , Filogenia , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Flavonoides/metabolismo , Flavonoides/biosíntesis , Plantas Modificadas Genéticamente , Propanoles/metabolismo
2.
J Am Chem Soc ; 146(10): 6773-6783, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421958

RESUMEN

The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure-reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.


Asunto(s)
Hidrocarburos Fluorados , Propanoles , Proteínas , Triptófano , Proteínas/química , Péptidos , Catálisis
3.
Biomacromolecules ; 25(6): 3583-3595, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38703359

RESUMEN

Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (bcPG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of bcPG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate in vitro biocompatibility, endothelial permeability, and formation of branched linear PG (blPG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for bcPG and the mixture bc+blPG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between bcPG, bc+blPG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. bcPG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.


Asunto(s)
Materiales Biocompatibles , Barrera Hematoencefálica , Humanos , Barrera Hematoencefálica/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Polimerizacion , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Polímeros/química , Polímeros/farmacología , Glicerol/química , Compuestos Epoxi/química , Línea Celular , Permeabilidad , Glicoles de Propileno/química , Propanoles/química
4.
Mol Biol Rep ; 51(1): 757, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874856

RESUMEN

BACKGROUND: The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS: We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION: The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.


Asunto(s)
Vías Biosintéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Salvia , Transcriptoma , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Vías Biosintéticas/genética , Salvia/genética , Salvia/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Anotación de Secuencia Molecular , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Propanoles/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundario/genética
5.
Plant Cell Rep ; 43(7): 179, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913159

RESUMEN

KEY MESSAGE: DzMYB2 functions as an MYB activator, while DzMYB3 acts as an MYB repressor. They bind to promoters, interact with DzbHLH1, and influence phenolic contents, revealing their roles in phenylpropanoid regulation in durian pulps. Durian fruit has a high nutritional value attributed to its enriched bioactive compounds, including phenolics, carotenoids, and vitamins. While various transcription factors (TFs) regulate phenylpropanoid biosynthesis, MYB (v-myb avian myeloblastosis viral oncogene homolog) TFs have emerged as pivotal players in regulating key genes within this pathway. This study aimed to identify additional candidate MYB TFs from the transcriptome database of the Monthong cultivar at five developmental/postharvest ripening stages. Candidate transcriptional activators were discerned among MYBs upregulated during the ripe stage based on the positive correlation observed between flavonoid biosynthetic genes and flavonoid contents in ripe durian pulps. Conversely, MYBs downregulated during the ripe stage were considered candidate repressors. This study focused on a candidate MYB activator (DzMYB2) and a candidate MYB repressor (DzMYB3) for functional characterization. LC-MS/MS analysis using Nicotiana benthamiana leaves transiently expressing DzMYB2 revealed increased phenolic compound contents compared with those in leaves expressing green fluorescence protein controls, while those transiently expressing DzMYB3 showed decreased phenolic compound contents. Furthermore, it was demonstrated that DzMYB2 controls phenylpropanoid biosynthesis in durian by regulating the promoters of various biosynthetic genes, including phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR). Meanwhile, DzMYB3 regulates the promoters of PAL, 4-coumaroyl-CoA ligase (4CL), CHS, and CHI, resulting in the activation and repression of gene expression. Moreover, it was discovered that DzMYB2 and DzMYB3 could bind to another TF, DzbHLH1, in the regulation of flavonoid biosynthesis. These findings enhance our understanding of the pivotal role of MYB proteins in regulating the phenylpropanoid pathway in durian pulps.


Asunto(s)
Flavonoides , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Flavonoides/metabolismo , Flavonoides/biosíntesis , Aciltransferasas/genética , Aciltransferasas/metabolismo , Propanoles/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo
6.
J Appl Toxicol ; 44(9): 1317-1328, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38715282

RESUMEN

The prevalence of fragrances in various hygiene products contributes to their sensorial allure. However, fragrances can induce sensitization in the skin or respiratory system, and the mechanisms involved in this process are incompletely understood. This study investigated the intricate mechanisms underlying the fragrance's effects on sensitization response, focusing on the interplay between CYP450 enzymes, a class of drug-metabolizing enzymes, and the adaptive immune system. Specifically, we assessed the expression of CYP450 enzymes and cytokine profiles in culture of BEAS-2B and mature dendritic cells (mDC) alone or in co-culture stimulated with 2 mM of a common fragrance, cinnamyl alcohol (CA) for 20 h. CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2A13 were analyzed by RT-PCR and IL-10, IL-12p70, IL-18, IL-33, and thymic stromal lymphopoietin (TSLP) by Cytometric Bead Array (CBA). Through RT-PCR analysis, we observed that CA increased CYP1A2 and CYP1B1 expression in BEAS-2B, with a further increased in BEAS-2B-mDC co-culture. Additionally, exposure to CA increased IL-12p70 levels in mDC rather than in BEAS-2B-mDC co-culture. In regards to IL-18, level was higher in BEAS-2B than in BEAS-2B-mDC co-culture. A positive correlation between the levels of IL-10 and CYP1B1 was found in mDC-CA-exposed and between IL-12p70 and CYP1A1 was found in BEAS-2B after CA exposure. However, IL-12p70 and CYP1A2 as well as IL-18, IL-33, and CYP1A1 levels were negative, correlated mainly in co-culture control. These correlations highlight potential immunomodulatory interactions and complex regulatory relationships. Overall, exposure to CA enhances CYP450 expression, suggesting that CA can influence immune responses by degrading ligands on xenosensitive transcription factors.


Asunto(s)
Técnicas de Cocultivo , Sistema Enzimático del Citocromo P-450 , Citocinas , Células Dendríticas , Propanoles , Humanos , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Propanoles/toxicidad , Propanoles/metabolismo , Línea Celular , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Perfumes/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/genética
7.
Biotechnol Lett ; 46(1): 107-114, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150097

RESUMEN

PURPOSE: Glucuronoyl esterases (GE, family CE15) catalyse the cleavage of ester linkages in lignin-carbohydrate complexes (LCCs), and this study demonstrate how transesterification reactions with a fungal GE from Cerrena unicolor (CuGE) can reveal the enzyme's preference for the alcohol-part of the ester-bond. METHODS: This alcohol-preference relates to where the ester-LCCs are located on the lignin molecule, and has consequences for how the enzymes potentially interact with lignin. It is unknown exactly what the enzymes prefer; either the α-benzyl or the γ-benzyl position. By providing the enzyme with a donor substrate (the methyl ester of either glucuronate or 4-O-methyl-glucuronate) and either one of two acceptor molecules (benzyl alcohol or 3-phenyl-1-propanol) we demonstrate that the enzyme can perform transesterification and it serves as a method for assessing the enzyme's alcohol preferences. CONCLUSION: CuGE preferentially forms the γ-ester from the methyl ester of 4-O-methyl-glucuronate and 3-phenyl-1-propanol and the enzyme's substrate preferences are primarily dictated by the presence of the 4-O-methylation on the glucuronoyl donor, and secondly on the type of alcohol.


Asunto(s)
Esterasas , Lignina , Polyporales , Propanoles , Esterasas/química , Carbohidratos , Ésteres , Glucuronatos , Especificidad por Sustrato
8.
J Dairy Sci ; 107(8): 5556-5573, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38395398

RESUMEN

The objective was to determine the long-term effect of 3-nitrooxypropanol (3-NOP) on CH4 emission and milk production characteristics from dairy cows receiving 3-NOP in their diet for a full year, covering all lactation stages of the dairy cows. Sixty-four late-lactation Holstein-Friesian cows (34% primiparous) were blocked in pairs, based on expected calving date, parity, and daily milk yield. The experiment started with an adaptation period of 1 wk followed by a covariate period of 3 wk in which all cows received the same basal diet and baseline measurements were performed. Directly after, cows within a block were randomly allocated to 1 of 2 dietary treatments: a diet containing on average 69.8 mg 3-NOP/kg DM (total ration level, corrected for intake of nonsupplemented GreenFeed bait) and a diet containing a placebo. Forage composition as well as forage-to-concentrate ratio altered with lactation stage (i.e., dry period and early, mid, and late lactation). Diets were provided as a total mixed ration, and additional bait was fed in GreenFeed units (C-Lock Inc.), which were used for emission measurements. Supplementation of 3-NOP did not affect total DMI, BW, or BCS, but resulted in a 6.5% increase in the yields of energy-corrected milk and fat- and protein-corrected milk (FPCM). Furthermore, milk fat and protein as well as feed efficiency were increased upon 3-NOP supplementation. Overall, a reduction of 21%, 20%, and 27% was achieved for CH4 production (g/d), yield (g/kg DMI), and intensity (g/kg FPCM), respectively, upon 3-NOP supplementation. The CH4 mitigation potential of 3-NOP was affected by the lactation stage dependent diet to which 3-NOP was supplemented. On average, a 16%, 20%, 16%, and 26% reduction in CH4 yield (g/kg DMI) was achieved upon 3-NOP supplementation for the dry period, and early, mid, and late-lactation diets, respectively. The CH4 mitigation potential of 3-NOP was affected by the length of 3-NOP supplementation within a lactation stage dependent diet and by variation in diet composition within a lactation stage dependent diet as a result of changes in grass and corn silage silos. In conclusion, 3-NOP reduced CH4 emission from cows receiving 3-NOP for a year, with a positive effect on production characteristics. The CH4 mitigation potential of 3-NOP was influenced by diet type, diet composition, and nutrition value, and the efficacy of 3-NOP appeared to decline over time but not continuously. Associated with changes in diet composition, increased efficacy of 3-NOP was observed at the start of the trial, at the start of a new lactation, and, importantly, at the end of the trial. These results suggest that diet composition has a large effect on the efficacy of 3-NOP, perhaps even larger than the week of supplementation after first introduction of 3-NOP. More studies are needed to clarify the long-term effects of 3-NOP on CH4 emission and to further investigate what influence variation in diet composition may have on the mitigation potential of 3-NOP.


Asunto(s)
Dieta , Lactancia , Metano , Leche , Animales , Bovinos , Lactancia/efectos de los fármacos , Femenino , Leche/química , Leche/metabolismo , Dieta/veterinaria , Metano/biosíntesis , Metano/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos , Propanoles/metabolismo , Propanoles/farmacología
9.
J Dairy Sci ; 107(8): 5681-5698, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38608947

RESUMEN

Dietary methane (CH4) mitigation is in some cases associated with an increased hydrogen (H2) emission. The objective of the present study was to investigate the acute and short-term effects of acceptors for H2 (fumaric acid, acrylic acid, or phloroglucinol) supplemented via pulse-dosing to dairy cows fed CH4 mitigating diets (using nitrate or 3-nitrooxypropanol), on gas exchange, rumen gas, and VFA composition. For this purpose, 2 individual 4 × 4 Latin square experiments were conducted with 4 periods of 3 d (nitrate supplementation) and 7 d (3-nitrooxypropanol supplementation), respectively. In each study, 4 rumen-cannulated Danish Holstein cows were used. Each additive for CH4 mitigation was included in the ad libitum-fed diet within the 2 experiments (exp. 1 and exp. 2), to which the cows were adapted for at least 14 d. Acceptors for H2 were administered twice daily in equal portions through the rumen fistula immediately after feeding of the individual cow. In exp. 1 (nitrate), the treatments were CON-1 (no H2-acceptor), FUM-1 (fumaric acid), ACR-1 (acrylic acid), and FUM+ACR-1 (50% FUM-1 + 50% ACR-1). In exp. 2 (3-nitrooxypropanol), the 3 treatments, CON-2, FUM-2, and ACR-2, were similar to CON-1, FUM-1 and ACR-1 treatments, however the fourth treatment was PHL-2 (phloroglucinol). Gas exchanges were measured in respiration chambers, and samples of rumen liquid and headspace gas were taken in time series relative to feeding and dosing on specific days. Headspace gas was analyzed for gas composition, and rumen liquid was analyzed for VFA composition and dissolved gas concentrations. Headspace gas composition and dissolved gas concentration were only measured in exp. 2. Dry matter intake was reduced upon acrylic acid supplementation. There were no significant effects of any treatments in any experiments on H2 emission, except for a decrease in hourly H2 emission rate (g/h) at 1 h after feeding in both experiments. In exp. 2, H2 headspace proportions increased with ACR-2 supplementation, whereas dissolved concentrations were unaffected. In exp. 1, cows on ACR-1 increased propionate proportion at 1 h after feeding. In exp. 2, both FUM-2 and ACR-2 increased rumen propionate proportion in the hours after feeding and dosing. There was no effect on rumen acetate for cows on PHL-2. There was a strong positive correlation between rumen dissolved CH4 and headspace CH4 (r = 0.84), whereas the equivalent correlation was weaker for H2 (r = 0.41). For the relationship between dissolved concentrations and emissions of CH4 and H2, there was a moderate positive correlation for CH4 (r = 0.54), whereas it was weak for H2 (r = 0.28) with zero slope. In conclusion, the results suggested that fumaric acid and acrylic acid to some extent was reduced to propionate without associative effects on measures for H2 redirection. Furthermore, phloroglucinol seemed not to be metabolized in the rumen in the present study, because no effects on rumen acetate or measures of H2 were observed. Changes in H2 headspace and emission may be a poor proxy for actual changes in the rumen fluid concentration of H2.


Asunto(s)
Alimentación Animal , Dieta , Fumaratos , Metano , Nitratos , Rumen , Animales , Bovinos , Rumen/metabolismo , Femenino , Metano/metabolismo , Dieta/veterinaria , Nitratos/administración & dosificación , Fumaratos/farmacología , Fumaratos/administración & dosificación , Suplementos Dietéticos , Hidrógeno , Propanoles/metabolismo , Propanoles/administración & dosificación , Lactancia , Leche/química , Leche/metabolismo , Fermentación , Ácidos Grasos Volátiles/metabolismo
10.
J Dairy Sci ; 107(9): 6817-6833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38762115

RESUMEN

The objective of this study was to determine the potential effect and interaction of 3-nitrooxypropanol (3-NOP; Bovaer, DSM-Firmenich Nutrition Products Ltd.) and whole cottonseed (WCS) on lactational performance and enteric methane (CH4) emission of dairy cows. A total of 16 multiparous cows, including 8 Holstein Friesian (HF) and 8 Brown Swiss (BS; 224 ± 36 DIM, 26 ± 3.7 kg milk yield, mean ± SD), were used in a split-plot design, where the main plot was the breed of cows. Within each subplot, cows were randomly assigned to a treatment sequence in a replicated 4 × 4 Latin square design with 2 × 2 factorial arrangements of treatments with four 24-d periods. The experimental treatments were as follows: (1) control (basal TMR), (2) 3-NOP (60 mg/kg TMR DM), (3) WCS (5% TMR DM), and (4) 3-NOP + WCS. The treatment diets were balanced for ether extract, crude protein, and NDF contents (4%, 16%, and 43% of TMR DM, respectively). The basal diets were fed twice daily at 0800 and 1800 h. Dry matter intake and milk yield were measured daily, and enteric gas emissions were measured (using the GreenFeed System, C-Lock Inc.) during the last 3 d of each 24-d experimental period when animals were housed in tiestalls. There was no difference in DMI on treatment level, whereas the WCS treatment increased ECM yield and milk fat yield. No interaction of 3-NOP and WCS occurred for any of the enteric gas emission parameters, but 3-NOP decreased CH4 production (g/d), CH4 yield (g/kg DMI), and CH4 intensity (g/kg ECM) by 13%, 14%, and 13%, respectively. Further, an unexpected interaction of breed by 3-NOP was observed for different enteric CH4 emission metrics: HF cows had a greater CH4 mitigation effect compared with BS cows for CH4 production (g/d; 18% vs. 8%), CH4 intensity (g/kg milk yield; 19% vs. 3%), and CH4 intensity (g/kg ECM; 19% vs. 4%). Hydrogen production was increased by 2.85-fold in HF and 1.53-fold in BS cows receiving 3-NOP. Further, a 3-NOP × time interaction occurred for both breeds. In BS cows, 3-NOP tended to reduce CH4 production by 18% at approximately 4 h after morning feeding, but no effect was observed at other time points. In HF cows, the greatest mitigation effect of 3-NOP (29.6%) was observed immediately after morning feeding, and it persisted at around 23% to 26% for 10 h until the second feed provision, and 3 h thereafter, in the evening. In conclusion, supplementing 3-NOP at 60 mg/kg DM to a high-fiber diet resulted in 18% to 19% reduction in enteric CH4 emission in Swiss HF cows. The lower response to 3-NOP by BS cows was unexpected and has not been observed in other studies. These results should be interpreted with caution due to the low number of cows per breed. Finally, supplementing WCS at 5% of DM improved ECM and milk fat yield but did not enhance the CH4 inhibition effect of 3-NOP of dairy cows.


Asunto(s)
Alimentación Animal , Dieta , Lactancia , Metano , Leche , Animales , Bovinos , Lactancia/efectos de los fármacos , Leche/química , Leche/metabolismo , Metano/biosíntesis , Metano/metabolismo , Femenino , Dieta/veterinaria , Propanoles/metabolismo , Gossypium
11.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339215

RESUMEN

α-Hydroxy ketones are a class of vital organic skeletons that generally exist in a variety of natural products and high-value chemicals. However, the traditional synthetic route for their production involves toxic Hg salts and corrosive H2SO4 as catalysts, resulting in harsh conditions and the undesired side reaction of Meyer-Schuster rearrangement. In this study, CO2-promoted hydration of propargylic alcohols was achieved for the synthesis of various α-hydroxy ketones. Notably, this process was catalyzed using an environmentally friendly and cost-effective biomass-based ionic liquids/CuCl system, which effectively eliminated the side reaction. The ionic liquids utilized in this system are derived from natural biomass materials, which exhibited recyclability and catalytic activity under 1 bar of CO2 pressure without volatile organic solvents or additives. Evaluation of the green metrics revealed the superiority of this CuCl/ionic liquid system in terms of environmental sustainability. Further mechanistic investigation attributed the excellent performance to the ionic liquid component, which exhibited multifunctionality in activating substrates, CO2 and the Cu component.


Asunto(s)
Alquinos , Líquidos Iónicos , Propanoles , Cetonas , Dióxido de Carbono , Biomasa , Catálisis
12.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255766

RESUMEN

Cinnamyl alcohol (CA) is an aromatic compound found in several plant-based resources and has been shown to exert anti-inflammatory and anti-microbial activities. However, the anti-adipogenic mechanism of CA has not been sufficiently studied. The present study aimed to investigate the effect and mechanism of CA on the regulation of adipogenesis. As evidenced by Oil Red O staining, Western blotting, and real-time PCR (RT-PCR) analyses, CA treatment (6.25-25 µM) for 8 d significantly inhibited lipid accumulation in a concentration-dependent manner and downregulated adipogenesis-related markers (peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), adiponectin, fatty acid synthase (FAS)) in 3-isobutyl-1-methylxanthine, dexamethasone, and insulin(MDI)-treated 3T3-L1 adipocytes. In particular, among the various differentiation stages, the early stage of adipogenesis was critical for the inhibitory effect of CA. Cell cycle analysis using flow cytometry and Western blotting showed that CA effectively inhibited MDI-induced initiation of mitotic clonal expansion (MCE) by arresting the cell cycle in the G0/G1 phase and downregulating the expression of C/EBPß, C/EBPδ, and cell cycle markers (cyclin D1, cyclin-dependent kinase 6 (CDK6), cyclin E1, CDK2, and cyclin B1). Moreover, AMP-activated protein kinase α (AMPKα), acetyl-CoA carboxylase (ACC), and extracellular signal-regulated kinase 1/2 (ERK1/2), markers of upstream signaling pathways, were phosphorylated during MCE by CA. In conclusion, CA can act as an anti-adipogenic agent by inhibiting the AMPKα and ERK1/2 signaling pathways and the cell cycle and may also act as a potential therapeutic agent for obesity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adipogénesis , Propanoles , Ratones , Animales , Células 3T3-L1 , Ciclo Celular , División Celular
13.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256094

RESUMEN

The fixation of carbon dioxide with epoxides is one of the most attractive methods for the green utilisation of this greenhouse gas and leads to many valuable chemicals. This process is characterised by 100% atom efficiency; however, an efficient catalyst is required to achieve satisfactory yields. Metal-organic frameworks (MOFs) are recognised as being extremely promising for this purpose. Nevertheless, many of the proposed catalysts are based on ions of rare elements or elements not entirely safe for the environment; this is notable with commercially unavailable ligands. In an effort to develop novel catalysts for CO2 fixation on an industrial scale, we propose novel MOFs, which consist of aluminium ions coordinated with commercially available 1,4-naphthalene dicarboxylic acid (Al@NDC) and their nanocomposites with gold nanoparticles entrapped inside their structure (AlAu@NDC). Due to the application of 4-amino triazole and 5-amino tetrazole as crystallization mediators, the morphology of the synthesised materials can be modified. The introduction of gold nanoparticles (AuNPs) into the structure of the synthesised Al-based MOFs causes the change in morphology from nano cuboids to nanoflakes, simultaneously decreasing their porosity. However, the homogeneity of the nanostructures in the system is preserved. All synthesised MOF materials are highly crystalline, and the simulation of PXRD patterns suggests the same tetragonal crystallographic system for all fabricated nanomaterials. The fabricated materials are proven to be highly efficient catalysts for carbon dioxide cycloaddition with a series of model epoxides: epichlorohydrin; glycidol; styrene oxide; and propylene oxide. Applying the synthesised catalysts enables the reactions to be performed under mild conditions (90 °C; 1 MPa CO2) within a short time and with high conversion and yield (90% conversion of glycidol towards glycerol carbonate with 89% product yield within 2 h). The developed nanocatalysts can be easily separated from the reaction mixture and reused several times (both conversion and yield do not change after five cycles). The excellent performance of the fabricated catalytic materials might be explained by their high microporosity (from 421 m2 g-1 to 735 m2 g-1); many catalytic centres in the structure exhibit Lewis acids' behaviour, increased capacity for CO2 adsorption, and high stability. The presence of AuNPs in the synthesised nanocatalysts (0.8% w/w) enables the reaction to be performed with a higher yield within a shorter time; this is especially important for less-active epoxides such as propylene oxide (two times higher yield was obtained using a nanocomposite, in comparison with Al-MOF without nanoparticles).


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Propanoles , Dióxido de Carbono , Oro , Aluminio , Compuestos Epoxi , Iones
14.
Carbohydr Res ; 543: 109223, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079235

RESUMEN

The DIBAL-H reduction of the Baylis-Hillman sugar adduct, obtained from 3-O-benzyl-1,2-isopropylidene-α-D-xylo-pentodialdo-1,4-furanose yielded trisubstituted alkenes by eliminating the ß-hydroxyl group. Subsequently, the hydrolysis of the isopropylidene acetal to the corresponding hemiacetal was reacted with N-benzyl hydroxylamine hydrochloride to generate the nitrone, which underwent diastereoselective intramolecular 1,3-dipolar nitrone olefin cycloaddition (INOC) to give an isoxazolidine skeleton. The concomitant reductive cleavage of the N-O bond and benzyl group of the fused isoxazolidines afforded new functionalized aminocyclopentitols in good yields.


Asunto(s)
Alquenos , Reacción de Cicloadición , Óxidos de Nitrógeno , Propanoles , Óxidos de Nitrógeno/química , Estereoisomerismo , Alquenos/química , Propanoles/química , Estructura Molecular
15.
Artículo en Inglés | MEDLINE | ID: mdl-38805241

RESUMEN

This study presents a method based on acid transesterification and the purification by solid-phase extraction (SPE) coupled with gas chromatography-tandem mass spectrometry for quantifying 3- and 2-monochloropropanediol esters (3-MCPDE, 2-MCPDE) and glycidyl esters (GE) in nutritional foods. The fat was extracted by liquid-liquid extraction with petroleum ether and diethyl ether after the sample was hydrolysed with ammonia. Then the extract was purified by a SPE cartridge filled with the aminopropyl sorbents. It was demonstrated that the optimal elution volume for 3-MCPDE, 2-MCPDE and GE greatly depended on the sample matrix and varied from 6 to 12 mL for four different kinds of food matrices. All three analytes in the sample solution could be fully collected in the first 10-12 mL of eluate. By this way, monoacylglycerols commonly present in the samples were fully removed. Therefore, the overestimation of GE quantification was effectively eliminated. The modified analytical procedure was fully validated in a single laboratory and has been recommended as a Chinese Food Safety National Standard. In addition, two derivatisation agents, heptafluorobutyrylimidazole and phenylboronic acid, were proved to be equivalent in method accuracy and precision for the quantification of three analytes.


Asunto(s)
Ésteres , Análisis de los Alimentos , Contaminación de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Propanoles , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Ésteres/análisis , Hidrólisis , Contaminación de Alimentos/análisis , Propanoles/análisis , Propanoles/química , Compuestos Epoxi/análisis , Compuestos Epoxi/química , alfa-Clorhidrina/análisis , Ácidos/análisis , Ácidos/química
16.
Int J Biol Macromol ; 261(Pt 2): 129845, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302016

RESUMEN

Numerous neurodegenerative disorders are characterized by protein misfolding and aggregation. The mechanism of protein aggregation is intricate, and it is very challenging to study at cellular level. Inhibition of protein aggregation by interfering with its pathway is one of the ways to prevent neurodegenerative diseases. In the present work, we have evaluated the protective effect of a polyphenol compound chlorogenic acid (CGA) on the native and molten globule state of horse heart cytochrome c (cyt c). A molten globule state of this heme protein was achieved in the presence of fluorinated alcohol 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) at physiological pH, as studied by UV-Vis absorption, circular dichroism, intrinsic and ANS fluorescence. We found that at 50 % (v/v) HFIP, the native cyt c transformed into a molten globule state. The same techniques were also used to analyze the protective effect of CGA on the molten globule state of cyt c, and the results show that the CGA prevented the molten globular state and retained the protein close to the native state at 1:1 protein:CGA sub molar ratio. Molecular dynamics study also revealed that CGA retains the stability of cyt c in HFIP medium by preserving it in an intermediate state close to native conformation.


Asunto(s)
Ácido Clorogénico , Citocromos c , Hidrocarburos Fluorados , Propanoles , Animales , Caballos , Citocromos c/química , Pliegue de Proteína , Agregado de Proteínas , Dicroismo Circular , Concentración de Iones de Hidrógeno , Conformación Proteica , Desnaturalización Proteica
17.
Environ Entomol ; 53(1): 101-107, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38160262

RESUMEN

As part of a long-term project on unraveling the use of pheromones in the large beetle family Cerambycidae, field trials were conducted with generic blends of known cerambycid pheromones at a desert site in southern California. In the first year of testing (2022), the species Eustromula valida (LeConte) (subfamily Cerambycinae, tribe Elaphidiini) and Aethecerinus latecinctus (Horn) (Cerambycinae, Trachyderini) were weakly attracted to one of the lure blends. In follow-up trials in 2023, only E. valida were caught, and collection of volatiles from both sexes of E. valida determined that males sex-specifically produced 3-methylthiopropan-1-ol (methionol), a compound that was not in the tested lure blends. Beetles of both sexes were strongly and specifically attracted to this compound in field bioassays, verifying that it is an aggregation-sex pheromone. No sympatric species were attracted to methionol while it was deployed in the field. Several recent studies have identified methionol as a pheromone component for other cerambycid species in both North and South America, suggesting it may represent another common pheromone component within the Cerambycidae.


Asunto(s)
Escarabajos , Atractivos Sexuales , Sulfuros , Femenino , Masculino , Animales , Atractivos Sexuales/farmacología , Feromonas/farmacología , Propanoles
18.
J Chromatogr A ; 1730: 465074, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38870581

RESUMEN

Ion-pairing reversed-phase liquid chromatography was utilized for the analysis of native and phosphorothioated oligonucleotides differing in the length (2-6mers and 21mer) and the number and position of phosphorothioate modifications. We investigated the influence of counterion (acetate vs. hexafluoroisopropanol) on the adsorption of eleven alkylamines on the stationary phases. A stronger adsorption of charged alkylamines on octadecyl- and phenyl-based stationary phases led to greater retention of oligonucleotides, and the adsorption of alkylamines was promoted with greater concentration of hexafluoroisopropanol in the mobile phase. Selected amines (triethylamine, dipropylamine, hexylamine) were used to study the resolution of n and n-x mers (main peak and its impurities shortened at 5´end), and diastereomeric separation of phosphorothioated oligonucleotides. The results confirmed a crucial role of alkylamine and counterion choice on the diastereomeric separation. The increasing hydrophobicity of alkylamine led to diminished diastereomeric selectivity which produced narrower phosphorothioated oligonucleotides peaks and led to improved n/n-x separation. Using hexafluoroisopropanol instead of acetate as counterion further enhances this effect (except for 100 mM concentration of hexafluoroisopropanol in combination with highly hydrophobic hexylamine). The elevated column temperature led to suppression of the diastereomeric resolution and improved resolution of n and n-x mers oligonucleotides. Baseline separation of oligonucleotides with different number of phosphorothioate linkages was achieved; this may be useful for therapeutic oligonucleotide analysis.


Asunto(s)
Cromatografía de Fase Inversa , Oligonucleótidos Fosforotioatos , Cromatografía de Fase Inversa/métodos , Oligonucleótidos Fosforotioatos/química , Oligonucleótidos Fosforotioatos/aislamiento & purificación , Estereoisomerismo , Aminas/química , Interacciones Hidrofóbicas e Hidrofílicas , Propanoles/química , Adsorción , Hidrocarburos Fluorados
19.
J Forensic Sci ; 69(4): 1256-1267, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647068

RESUMEN

Pinacolyl alcohol (PA), a key forensic marker for the nerve agent Soman (GD), is a particularly difficult analyte to detect by various analytical methods. In this work, we have explored the reaction between PA and 1,1'-carbonyldiimidazole (CDI) to yield pinacolyl 1H-imidazole-1-carboxylate (PIC), a product that can be conveniently detected by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Regarding its GC-MS profile, this new carbamate derivative of PA possesses favorable chromatographic features such as a sharp peak and a longer retention time (RT = 16.62 min) relative to PA (broad peak and short retention time, RT = 4.1 min). The derivative can also be detected by LC-HRMS, providing an avenue for the analysis of this chemical using this technique where PA is virtually undetectable unless present in large concentrations. From a forensic science standpoint, detection of this low molecular weight alcohol signals the past or latent presence of the nerve agent Soman (GD) in a given matrix (i.e., environmental or biological). The efficiency of the protocol was tested separately in the analysis and detection of PA by EI-GC-MS and LC-HRMS when present at a 10 µg/mL in a soil matrix featured in the 44th PT and in a glycerol-rich liquid matrix featured in the 48th Official Organization for the Prohibition of Chemical Weapons (OPCW) Proficiency Test when present at a 5 µg/mL concentration. In both scenarios, PA was successfully transformed into PIC, establishing the protocol as an additional tool for the analysis of this unnatural and unique nerve agent marker by GC-MS and LC-HRMS.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Soman , Soman/análisis , Soman/análogos & derivados , Humanos , Cromatografía Liquida , Imidazoles/química , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Toxicología Forense/métodos , Sustancias para la Guerra Química/análisis , Espectrometría de Masas/métodos , Propanoles/química , Propanoles/análisis
20.
J Proteomics ; 296: 105124, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38364903

RESUMEN

Buffalo is a silent heat animal and doesn't show prominent signs of estrous like cattle so it becomes difficult for farmers to determine the receptivity of the animal based purely on the animal behaviour. India, having a huge population size, needs to produce more milk for the population. Successful artificial insemination greatly depends on the receptivity of the animal. Hence the present study aimed to identify the changes in the metabolome of the buffalo. GC-MS based mass spectrometric analysis was deployed for the determination of estrous by differential expression of metabolites. It was found that hydracrylic acid, 3-bromo-1-propanol and benzyl serine were significantly upregulated in the estrous phase of buffalo (p.value ≤0.05, FC ≥ 2). The pathway enrichment analysis also supported the same as pathways related to amino acid metabolism and fatty acid metabolism were up regulated along with the Warburg effect which is linked to the rapid cell proliferation which might help prepare animals to meet the energy requirement during the estrous. Further analysis of the metabolic biomarkers using ROC analysis also supported these three metabolites as probable biomarkers as they were identified with AUC values of 0.7 or greater. SIGNIFICANCE: The present study focuses on the untargeted metabolomics studies of buffalo urine with special reference to the estrous phase of reproductive cycle. The estrous signals are more prominent in cattle, where animals show clear estrous signals such as mounting and discharge along with vocal signals. Buffalo is a silent heat animal and it becomes difficult for farmers to detect the estrous based on the physical and behavioral signals. Hence the present study focuses on GC-MS based untargeted metabolomics to identify differentially expressed urine metabolites. In this study, hydracrylic acid, 3-bromo-1-propanol and benzyl serine were found to be significantly upregulated in the estrous phase of buffalo (p-value ≤0.05, FC ≥ 2). Further confirmation of the metabolic biomarkers was done using Receiver operating characteristics (ROC) analysis which also supported these three metabolites as probable biomarkers as they had AUC values of 0.7 or greater. Hence, this study will be of prime importance for the people working in the area of animal metabolomics.


Asunto(s)
1-Propanol , Ácido Láctico/análogos & derivados , Serina , Humanos , Femenino , Animales , Bovinos , Estro , Metabolómica , Biomarcadores/análisis , Metaboloma , Propanoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA