Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272420

RESUMEN

The vertebrate appendage comprises three primary segments, the stylopod, zeugopod and autopod, each separated by joints. The molecular mechanisms governing the specification of joint sites, which define segment lengths and thereby limb architecture, remain largely unknown. Existing literature suggests that reciprocal gradients of retinoic acid (RA) and fibroblast growth factor (FGF) signaling define the expression domains of the putative segment markers Meis1, Hoxa11 and Hoxa13. Barx1 is expressed in the presumptive joint sites. Our data demonstrate that RA-FGF signaling gradients define the expression domain of Barx1 in the first presumptive joint site. When misexpressed, Barx1 induces ectopic interzone-like structures, and its loss of function partially blocks interzone development. Simultaneous perturbations of RA-FGF signaling gradients result in predictable shifts of Barx1 expression domains along the proximo-distal axis and, consequently, in the formation of repositioned joints. Our data suggest that during early limb bud development in chick, Meis1 and Hoxa11 expression domains are overlapping, whereas the Barx1 expression domain resides within the Hoxa11 expression domain. However, once the interzone is formed, the expression domains are refined and the Barx1 expression domain becomes congruent with the border of these two putative segment markers.


Asunto(s)
Articulaciones , Factores de Transcripción , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Articulaciones/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Extremidades , Regulación del Desarrollo de la Expresión Génica
2.
Nature ; 582(7811): 271-276, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499640

RESUMEN

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Asunto(s)
Calcineurina/metabolismo , Proliferación Celular , Proteínas de Homeodominio/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Corazón/fisiología , Proteínas de Homeodominio/genética , Masculino , Ratones , Miocardio/citología , Unión Proteica , Regeneración
3.
Circulation ; 149(23): 1812-1829, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426339

RESUMEN

BACKGROUND: Discovering determinants of cardiomyocyte maturity is critical for deeply understanding the maintenance of differentiated states and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Forced dedifferentiation paired with oncogene expression is sufficient to drive cardiac regeneration, but elucidation of endogenous developmental regulators of the switch between regenerative and mature cardiomyocyte cell states is necessary for optimal design of regenerative approaches for heart disease. MBNL1 (muscleblind-like 1) regulates fibroblast, thymocyte, and erythroid differentiation and proliferation. Hence, we examined whether MBNL1 promotes and maintains mature cardiomyocyte states while antagonizing cardiomyocyte proliferation. METHODS: MBNL1 gain- and loss-of-function mouse models were studied at several developmental time points and in surgical models of heart regeneration. Multi-omics approaches were combined with biochemical, histological, and in vitro assays to determine the mechanisms through which MBNL1 exerts its effects. RESULTS: MBNL1 is coexpressed with a maturation-association genetic program in the heart and is regulated by the MEIS1/calcineurin signaling axis. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of estrogen-related receptor signaling was essential for maintaining cardiomyocyte maturity in adult myocytes. In accordance with these data, modulating MBNL1 dose tuned the temporal window of neonatal cardiac regeneration, where increased MBNL1 expression arrested myocyte proliferation and regeneration and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. However, MBNL1 deficiency was insufficient to promote regeneration in the adult heart because of cell cycle checkpoint activation. CONCLUSIONS: Here, MBNL1 was identified as an essential regulator of cardiomyocyte differentiated states, their developmental switch from hyperplastic to hypertrophic growth, and their regenerative potential through controlling an entire maturation program by stabilizing adult myocyte mRNAs during postnatal development and throughout adulthood. Targeting loss of cardiomyocyte maturity and downregulation of cell cycle inhibitors through MBNL1 deletion was not sufficient to promote adult regeneration.


Asunto(s)
Diferenciación Celular , Miocitos Cardíacos , Proteínas de Unión al ARN , Regeneración , Animales , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratones , Proliferación Celular , Transducción de Señal , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteínas de Unión al ADN
4.
EMBO J ; 39(24): e104983, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33103827

RESUMEN

Recent advances in molecular profiling provide descriptive datasets of complex differentiation landscapes including the haematopoietic system, but the molecular mechanisms defining progenitor states and lineage choice remain ill-defined. Here, we employed a cellular model of murine multipotent haematopoietic progenitors (Hoxb8-FL) to knock out 39 transcription factors (TFs) followed by RNA-Seq analysis, to functionally define a regulatory network of 16,992 regulator/target gene links. Focussed analysis of the subnetworks regulated by the B-lymphoid TF Ebf1 and T-lymphoid TF Gata3 revealed a surprising role in common activation of an early myeloid programme. Moreover, Gata3-mediated repression of Pax5 emerges as a mechanism to prevent precocious B-lymphoid differentiation, while Hox-mediated activation of Meis1 suppresses myeloid differentiation. To aid interpretation of large transcriptomics datasets, we also report a new method that visualises likely transitions that a progenitor will undergo following regulatory network perturbations. Taken together, this study reveals how molecular network wiring helps to establish a multipotent progenitor state, with experimental approaches and analysis tools applicable to dissecting a broad range of both normal and perturbed cellular differentiation landscapes.


Asunto(s)
Linaje de la Célula/fisiología , Sistema Hematopoyético/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula/genética , Epigenómica , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , Células Precursoras de Linfocitos B , Factores de Transcripción/genética
5.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34032267

RESUMEN

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.


Asunto(s)
Plexo Coroideo/embriología , Epitelio/metabolismo , Cuarto Ventrículo/embriología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteína Wnt-5a/metabolismo , Animales , Encéfalo/embriología , Sistemas CRISPR-Cas/genética , Línea Celular , Células Epiteliales/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Transducción de Señal/fisiología , Proteína Wnt-5a/genética
6.
Development ; 148(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33298461

RESUMEN

Vertebrate axial skeletal patterning is controlled by co-linear expression of Hox genes and axial level-dependent activity of HOX protein combinations. MEIS transcription factors act as co-factors of HOX proteins and profusely bind to Hox complex DNA; however, their roles in mammalian axial patterning remain unknown. Retinoic acid (RA) is known to regulate axial skeletal element identity through the transcriptional activity of its receptors; however, whether this role is related to MEIS/HOX activity remains unknown. Here, we study the role of Meis in axial skeleton formation and its relationship to the RA pathway in mice. Meis elimination in the paraxial mesoderm produces anterior homeotic transformations and rib mis-patterning associated to alterations of the hypaxial myotome. Although Raldh2 and Meis positively regulate each other, Raldh2 elimination largely recapitulates the defects associated with Meis deficiency, and Meis overexpression rescues the axial skeletal defects in Raldh2 mutants. We propose a Meis-RA-positive feedback loop, the output of which is Meis levels, that is essential to establish anterior-posterior identities and patterning of the vertebrate axial skeleton.


Asunto(s)
Tipificación del Cuerpo , Huesos/embriología , Huesos/metabolismo , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Tretinoina/metabolismo , Aldehído Oxidorreductasas/deficiencia , Aldehído Oxidorreductasas/metabolismo , Alelos , Animales , Tipificación del Cuerpo/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Feto/metabolismo , Proteínas de Homeodominio/genética , Integrasas/metabolismo , Ratones , Modelos Biológicos , Mutación/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
7.
Mol Biol Rep ; 51(1): 712, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824221

RESUMEN

INTRODUCTION: Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS: The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION: This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.


Asunto(s)
Enfermedad de la Arteria Coronaria , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas Nucleares , Transactivadores , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Enfermedad de la Arteria Coronaria/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Interleucina-10/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
8.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834999

RESUMEN

MicroRNA-23a (miR-23a) is an endogenous small activating RNA (saRNA) involved in ovarian granulosa cell (GC) apoptosis and sow fertility by activating lncRNA NORHA transcription. Here, we reported that both miR-23a and NORHA were repressed by a common transcription factor MEIS1, which forms a small network regulating sow GC apoptosis. We characterized the pig miR-23a core promoter, and the putative binding sites of 26 common transcription factors were detected in the core promoters of both miR-23a and NORHA. Of them, transcription factor MEIS1 expression was the highest in the ovary, and widely distributed in various ovarian cells, including GCs. Functionally, MEIS1 is involved in follicular atresia by inhibiting GC apoptosis. Luciferase reporter and ChIP assays showed that transcription factor MEIS1 represses the transcription activity of miR-23a and NORHA through direct binding to their core promoters. Furthermore, MEIS1 represses miR-23a and NORHA expression in GCs. Additionally, MEIS1 inhibits the expression of FoxO1, a downstream of the miR-23a/NORHA axis, and GC apoptosis by repressing the miR-23a/NORHA axis. Overall, our findings point to MEIS1 as a common transcription repressor of miR-23a and NORHA, and develop the miR-23a/NORHA axis into a small regulatory network regulating GC apoptosis and female fertility.


Asunto(s)
Células de la Granulosa , MicroARNs , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Animales , Femenino , Apoptosis/genética , Atresia Folicular , Regulación de la Expresión Génica , Células de la Granulosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Porcinos
9.
Semin Cell Dev Biol ; 100: 52-61, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31623926

RESUMEN

Regeneration of cardiomyocytes, endothelial cells and vascular smooth muscle cells (three major lineages of cardiac tissues) following myocardial infarction is the critical step to recover the function of the damaged heart. Myeloid ecotropic viral integration site 1 (Meis1) was first discovered in leukemic mice in 1995 and its biological function has been extensively studied in leukemia, hematopoiesis, the embryonic pattering of body axis, eye development and various genetic diseases, such as restless leg syndrome. It was found that Meis1 is highly associated with Hox genes and their cofactors to exert its regulatory effects on multiple intracellular signaling pathways. Recently with the advent of bioinformatics, biochemical methods and advanced genetic engineering tools, new function of Meis1 has been found to be involved in the cell cycle regulation of cardiomyocytes and endothelial cells. For example, inhibition of Meis1 expression increases the proliferative capacity of neonatal mouse cardiomyocytes, whereas overexpression of Meis1 results in the reduction in the length of cardiomyocyte proliferative window. Interestingly, downregulation of one of the circular RNAs, which acts downstream of Meis1 in the cardiomyocytes, promotes angiogenesis and restores the myocardial blood supply, thus reinforcing better regeneration of the damaged heart. It appears that Meis1 may play double roles in modulating proliferation and regeneration of cardiomyocytes and endothelial cells post-myocardial infarction. In this review, we propose to summarize the major findings of Meis1 in modulating fetal development and adult abnormalities, especially focusing on the recent discoveries of Meis1 in controlling the fate of cardiomyocytes and endothelial cells.


Asunto(s)
Genes Homeobox , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Regeneración , Animales , Humanos
10.
Dev Biol ; 479: 61-76, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34310923

RESUMEN

Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.


Asunto(s)
Lampreas/genética , Tubo Neural/embriología , Rombencéfalo/embriología , Animales , Sitios de Unión , Tipificación del Cuerpo/genética , Secuencia Conservada , Elementos de Facilitación Genéticos , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/metabolismo , Lampreas/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Cresta Neural/metabolismo , Tubo Neural/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Rombencéfalo/metabolismo , Factores de Transcripción/metabolismo
11.
Nat Chem Biol ; 16(12): 1403-1410, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32868895

RESUMEN

The nuclear receptor-binding SET domain (NSD) family of histone methyltransferases is associated with various malignancies, including aggressive acute leukemia with NUP98-NSD1 translocation. While NSD proteins represent attractive drug targets, their catalytic SET domains exist in autoinhibited conformation, presenting notable challenges for inhibitor development. Here, we employed a fragment-based screening strategy followed by chemical optimization, which resulted in the development of the first-in-class irreversible small-molecule inhibitors of the nuclear receptor-binding SET domain protein 1 (NSD1) SET domain. The crystal structure of NSD1 in complex with covalently bound ligand reveals a conformational change in the autoinhibitory loop of the SET domain and formation of a channel-like pocket suitable for targeting with small molecules. Our covalent lead-compound BT5-demonstrates on-target activity in NUP98-NSD1 leukemia cells, including inhibition of histone H3 lysine 36 dimethylation and downregulation of target genes, and impaired colony formation in an NUP98-NSD1 patient sample. This study will facilitate the development of the next generation of potent and selective inhibitors of the NSD histone methyltransferases.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Regulación Leucémica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Leucocitos/efectos de los fármacos , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Antineoplásicos/síntesis química , Sitios de Unión , Inhibidores Enzimáticos/síntesis química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Cinética , Leucemia/tratamiento farmacológico , Leucemia/enzimología , Leucemia/genética , Leucemia/patología , Leucocitos/enzimología , Leucocitos/patología , Modelos Moleculares , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Especificidad por Sustrato , Células Tumorales Cultivadas
12.
FASEB J ; 35(10): e21915, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34496088

RESUMEN

During development, erythroid cells are generated by two waves of hematopoiesis. In zebrafish, primitive erythropoiesis takes place in the intermediate cell mass region, and definitive erythropoiesis arises from the aorta-gonad mesonephros. TALE-homeoproteins Meis1 and Pbx1 function upstream of GATA1 to specify the erythroid lineage. Embryos lacking Meis1 or Pbx1 have weak gata1 expression and fail to produce primitive erythrocytes. Nevertheless, the underlying mechanism of how Meis1 and Pbx1 mediate gata1 transcription in erythrocytes remains unclear. Here we show that Hif1α acts downstream of Meis1 to mediate gata1 expression in zebrafish embryos. Inhibition of Meis1 expression resulted in suppression of hif1a expression and abrogated primitive erythropoiesis, while injection with in vitro-synthesized hif1α mRNA rescued gata1 transcription in Meis1 morphants and recovered their erythropoiesis. Ablation of Hif1α expression either by morpholino knockdown or Crispr-Cas9 knockout suppressed gata1 transcription and abrogated primitive erythropoiesis. Results of chromatin immunoprecipitation assays showed that Hif1α associates with hypoxia-response elements located in the 3'-flanking region of gata1 during development, suggesting that Hif1α regulates gata1 expression in vivo. Together, our results indicate that Meis1, Hif1α, and GATA1 indeed comprise a hierarchical regulatory network in which Hif1α acts downstream of Meis1 to activate gata1 transcription through direct interactions with its cis-acting elements in primitive erythrocytes.


Asunto(s)
Células Eritroides/metabolismo , Eritropoyesis , Factor de Transcripción GATA1/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Inmunoprecipitación de Cromatina , Eritrocitos/citología , Eritrocitos/metabolismo , Células Eritroides/citología , Eritropoyesis/genética , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/deficiencia , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/deficiencia , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Transcripción Genética , Pez Cebra/sangre , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
13.
Nucleic Acids Res ; 48(5): e27, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31974574

RESUMEN

Transcription factors (TFs) can bind DNA in a cooperative manner, enabling a mutual increase in occupancy. Through this type of interaction, alternative binding sites can be preferentially bound in different tissues to regulate tissue-specific expression programmes. Recently, deep learning models have become state-of-the-art in various pattern analysis tasks, including applications in the field of genomics. We therefore investigate the application of convolutional neural network (CNN) models to the discovery of sequence features determining cooperative and differential TF binding across tissues. We analyse ChIP-seq data from MEIS, TFs which are broadly expressed across mouse branchial arches, and HOXA2, which is expressed in the second and more posterior branchial arches. By developing models predictive of MEIS differential binding in all three tissues, we are able to accurately predict HOXA2 co-binding sites. We evaluate transfer-like and multitask approaches to regularizing the high-dimensional classification task with a larger regression dataset, allowing for the creation of deeper and more accurate models. We test the performance of perturbation and gradient-based attribution methods in identifying the HOXA2 sites from differential MEIS data. Our results show that deep regularized models significantly outperform shallow CNNs as well as k-mer methods in the discovery of tissue-specific sites bound in vivo.


Asunto(s)
Región Branquial/metabolismo , Aprendizaje Profundo , Proteínas de Homeodominio/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , ARN/genética , Animales , Sitios de Unión , Región Branquial/crecimiento & desarrollo , Inmunoprecipitación de Cromatina , Biología Computacional/métodos , Biología Computacional/estadística & datos numéricos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Ratones , Modelos Genéticos , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Especificidad de Órganos , Distribución de Poisson , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN/metabolismo
14.
Adv Exp Med Biol ; 1387: 127-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35304708

RESUMEN

Acute leukemia (AL) is a poor progressive resistant hematological disease, which has different subtypes and immunophenotypic properties according to leukemic blasts. AL is caused by genetic changes and associated with leukemia stem cells (LSCs), which determine its prognosis and endurance. LSCs are thought to be hematopoietic progenitor and stem cell (HPSCs)-like cells that underwent a malignant transformation. In addition to their low number, LSCs have the characteristics of self-renewal, resistance to chemotherapy, and relapse of leukemia. The myeloid ecotropic integration site-1 (MEIS1) protein is a member of the three-amino acid loop extension (TALE) family of homeodomain (HD) proteins that can bind to DNA sequence-specific manner. Studies have shown that overexpression of MEIS1 and associated cofactors involves tumorigenesis of numerous cancers. Historically, increased expression of Meis1 transcript as well as protein has been determined in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) patients. Moreover, resistance to conventional chemotherapy was observed in leukemic blast samples with high Meis1 content. In this review article, the molecular mechanism of the oncological role of the MEIS1 protein in leukemia and LSC is discussed. In addition, it was suggested that MEIS1 protein could be utilized as a possible treatment target in leukemia with an emphasis on the inhibition of MEIS1, which is overexpressed in LSC.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda , Transformación Celular Neoplásica/genética , Proteínas de Homeodominio/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteínas de Neoplasias/metabolismo
15.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805969

RESUMEN

The human genome is covered by 8% of candidate cis-regulatory elements. The identification of distal acting regulatory elements and an understanding of their action are crucial to determining their key role in gene expression. Disruptions of such regulatory elements and/or chromatin conformation are likely to play a critical role in human genetic diseases. Non-syndromic hearing loss (i.e., DFNB1) is mostly due to GJB2 (Gap Junction Beta 2) variations and DFNB1 large deletions. Although several GJB2 cis-regulatory elements (CREs) have been described, GJB2 gene regulation remains not well understood. We investigated the endogenous effect of these CREs with CRISPR (clustered regularly interspaced short palindromic repeats) disruptions and observed GJB2 expression. To decipher the GJB2 regulatory landscape, we used the 4C-seq technique and defined new chromatin contacts inside the DFNB1 locus, which permit DNA loops and long-range regulation. Moreover, through ChIP-PCR, we determined the involvement of the MEIS1 transcription factor in GJB2 expression. Taken together, the results of our study enable us to describe the 3D DFNB1 regulatory landscape.


Asunto(s)
Cromatina , Conexina 26 , Conexinas , Sordera , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Cromatina/genética , Cromatina/metabolismo , Conexina 26/genética , Conexina 26/metabolismo , Conexinas/genética , Conexinas/metabolismo , Sordera/genética , Sordera/metabolismo , Humanos , Mutación , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo
16.
Circ Res ; 124(8): 1184-1197, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30744497

RESUMEN

RATIONALE: Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE: We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS: Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS: Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Genes de Retinoblastoma/fisiología , Genes p16/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Animales , Línea Celular , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Silenciador del Gen , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Células Madre Pluripotentes/trasplante , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Porcinos , Regulación hacia Arriba
17.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34948208

RESUMEN

Recurrence and metastasis remain major obstacles in colorectal cancer (CRC) treatment. Recent studies suggest that a small subpopulation of cells with a self-renewal ability, called cancer stem-like cells (CSCs), promotes recurrence and metastasis in CRC. Unfortunately, no CSC inhibitor has been demonstrated to be more effective than existing chemotherapeutic drugs, resulting in a significant unmet need for effective CRC therapies. In this study, transcriptomic profiling of metastatic tumors from CRC patients revealed significant upregulation in the Wnt pathway and stemness genes. Thus, we examined the therapeutic effect of the small-molecule Wnt inhibitor ICG-001 on cancer stemness and metastasis. The ICG-001 treatment efficiently attenuated self-renewal activity and metastatic potential. Mechanistically, myeloid ecotropic viral insertion site 1 (MEIS1) was identified as a target gene of ICG-001 that is transcriptionally regulated by Wnt signaling. A series of functional analyses revealed that MEIS1 enhanced the CSC behavior and metastatic potential of the CRC cells. Collectively, our findings suggest that ICG-001 efficiently inhibits CRC stemness and metastasis by suppressing MEIS1 expression. These results provide a basis for the further clinical investigation of ICG-001 as a targeted therapy for CSCs, opening a new avenue for the development of novel Wnt inhibitors for the treatment of CRC metastasis.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Pirimidinonas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Perfilación de la Expresión Génica/métodos , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Transcripción Genética/efectos de los fármacos
18.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502319

RESUMEN

HOXA9 and MEIS1 are frequently upregulated in acute myeloid leukemia (AML), including those with MLL-rearrangement. Because of their pivotal role in hemostasis, HOXA9 and MEIS1 appear non-druggable. We, thus, interrogated gene expression data of pre-leukemic (overexpressing Hoxa9) and leukemogenic (overexpressing Hoxa9 and Meis1; H9M) murine cell lines to identify cancer vulnerabilities. Through gene expression analysis and gene set enrichment analyses, we compiled a list of 15 candidates for functional validation. Using a novel lentiviral multiplexing approach, we selected and tested highly active sgRNAs to knockout candidate genes by CRISPR/Cas9, and subsequently identified a H9M cell growth dependency on the cytosolic phospholipase A2 (PLA2G4A). Similar results were obtained by shRNA-mediated suppression of Pla2g4a. Remarkably, pharmacologic inhibition of PLA2G4A with arachidonyl trifluoromethyl ketone (AACOCF3) accelerated the loss of H9M cells in bulk cultures. Additionally, AACOCF3 treatment of H9M cells reduced colony numbers and colony sizes in methylcellulose. Moreover, AACOCF3 was highly active in human AML with MLL rearrangement, in which PLA2G4A was significantly higher expressed than in AML patients without MLL rearrangement, and is sufficient as an independent prognostic marker. Our work, thus, identifies PLA2G4A as a prognostic marker and potential therapeutic target for H9M-dependent AML with MLL-rearrangement.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Sistemas CRISPR-Cas , Regulación Neoplásica de la Expresión Génica , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/patología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Fosfolipasas A2 Grupo IV/genética , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Células Tumorales Cultivadas
19.
J Cell Mol Med ; 24(21): 12550-12559, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32888389

RESUMEN

The solute carrier family 52 member 3 (SLC52A3) gene encodes riboflavin transporter protein which is essential to maintain mitochondrial function in cells. In our research, we found that SLC52A3 rs13042395 C > T variation was significantly associated with poor survival in a 926 Chinese gastric cancer (GCa) patients cohort (CC/CT genotype versus TT genotype, HR = 0.57, 95%CI (0.40-0.82), log-rank P = 0.015). The SLC52A3 rs13042395 C > T change led to its increased mRNA expression according to expression quantitative trait loci analysis (P = 0.0029). In vitro, it was revealed that rs13042395 C allele had higher binding affinity to inhibitory transcription factor Meis homeobox 1 (MEIS1) compared with T allele, knock-down of MEIS1 could up-regulate SLC52A3, and overexpression of SLC52A3 contributed to the increased ability of proliferation, colony formation, migration and invasion in GCa cells. Subsequently, the bioinformatics analysis combined with experiments in vitro suggested that Gap junction protein alpha 1 (GJA1) was the downstream effector of SLC52A3, SLC52A3 may promote the GCa cells aggressiveness by down-regulating the GJA1 expression. Overall, SLC52A3 genetic variant rs13042395 C > T change was associated with poorer survival in Chinese GCa patients and increased SLC52A3 expression by interaction with MEIS1. SLC52A3 promoted the GCa cells aggressiveness by down-regulating the GJA1 expression.


Asunto(s)
Pueblo Asiatico/genética , Neoplasias Esofágicas/genética , Predisposición Genética a la Enfermedad , Proteínas de Transporte de Membrana/genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Línea Celular Tumoral , Conexina 43/genética , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia
20.
Circulation ; 139(25): 2857-2876, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-30947518

RESUMEN

BACKGROUND: circRNAs (circular RNAs) are emerging as powerful regulators of cardiac development and disease, but their roles in cardiac regeneration are still unknown. This study used superenhancers to distinguish key circRNAs in the regulation of cardiac regeneration and explored the mechanisms underlying circRNA functions. METHODS: We used integrated bioinformatics analysis of RNA sequencing data and superenhancer catalogs to identify superenhancer-associated circRNAs. Quantitative polymerase chain reactions and in situ hybridization were performed to determine the circRNA expression patterns in hearts. Gain- and loss-of-function assays were conducted to detect the role of circRNAs in cardiomyocyte proliferation and cardiac repair after myocardial infarction. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays were used to determine the binding of Meis1 (Meis homeobox 1) on circNfix-associated superenhancers. RNA pulldown and luciferase reporter assays were used to study circRNA interactions with proteins and miRNAs (micro RNAs). RESULTS: We identified a circRNA, Nfix circRNA (circNfix), that was regulated by a superenhancer and overexpressed in the adult heart in humans, rats, and mice. The transcription factor Meis1 bound to the superenhancer at the circNfix locus, and increased its expression. In vitro and in vivo, cardiomyocyte proliferation was increased by knockdown of circNfix, whereas it was inhibited by circNfix overexpression. Moreover, circNfix downregulation promoted cardiomyocyte proliferation and angiogenesis and inhibited cardiomyocyte apoptosis after myocardial infarction, attenuating cardiac dysfunction and improving the prognosis. Mechanistically, circNfix reinforced the interaction of Ybx1 (Y-box binding protein 1) with Nedd4l (an E3 ubiquitin ligase), and induced Ybx1 degradation through ubiquitination, repressing cyclin A2 and cyclin B1 expression. In addition, circNfix acted as a sponge for miR-214 to promote Gsk3ß (glycogen synthase kinase 3 ß) expression and repress ß-catenin activity. CONCLUSIONS: Loss of superenhancer-regulated circNfix promotes cardiac regenerative repair and functional recovery after myocardial infarction by suppressing Ybx1 ubiquitin-dependent degradation and increasing miR-214 activity and thus may be a promising strategy for improving the prognosis after MI.


Asunto(s)
Proliferación Celular , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ARN Circular/metabolismo , Regeneración , Animales , Apoptosis , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Neovascularización Fisiológica , ARN Circular/genética , Ratas Sprague-Dawley , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA