Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Carcinog ; 62(12): 1947-1959, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37642304

RESUMEN

Cyclin-dependent kinase subunit 2 (CKS2) has been reported to promote various malignancies. This study investigated the functional role of CKS2 in pancreatic cancer (PC). An analysis of abnormally expressed genes and their prognostic value for PC was performed by using the Gene Expression Profiling Interactive Analysis (GEPIA) database and performing immunohistochemical staining on 64 samples of tumor tissue. CCK-8 assays, EdU staining, colony formation assays, flow cytometry, and a xenograft tumor model were used to analyze the biological function of CKS2 in PC. Our results revealed that CKS2 was expressed at significantly higher levels in PC tissues than in adjacent normal tissues, and a high level of CKS2 expression was associated with a poor prognosis for patients with PC. Moreover, functional assays revealed that CKS2 knockdown suppressed cell proliferation, induced cell cycle S phase, G2/M phase arrest, and apoptosis in vitro, and also reduced tumor growth in vivo. In addition, CKS2 knockdown increased the levels of Bax, caspase-3, P53, P21, and GADD45α expression, but decreased Bcl-2, Cyclin B1, CDK1, Cyclin A, and Cdc25C expression. CKS2 overexpression produced the opposite effects of CKS2 knockdown. Furthermore, we found that ELK1 protein regulated transcription of the CKS2 gene. In conclusion, our findings suggest that CKS2 expression is regulated by ELK1, which could possibly serve as prognostic indicator and therapeutic target for PC.


Asunto(s)
Quinasas CDC2-CDC28 , Neoplasias Pancreáticas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasas CDC2-CDC28/genética , Quinasas CDC2-CDC28/metabolismo , Proliferación Celular/genética , Fase G2 , Apoptosis/genética , Neoplasias Pancreáticas/genética , Regulación Neoplásica de la Expresión Génica , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Proteína Elk-1 con Dominio ets/farmacología
2.
J Obstet Gynaecol Res ; 49(8): 2175-2184, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37339943

RESUMEN

BACKGROUND: KIFC1 exerts an important function in centrosome aggregation in breast cancer (BC) cells and a variety of other cancer cells, but its potential mechanisms in BC pathogenesis are yet fully elucidated. The aim of this study was to investigate the effects of KIFC1 on BC progression and its underlying mechanisms. METHODS: Expression of ELK1 and KIFC1 in BC was analyzed by The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction. Cell proliferative capacity was examined by CCK-8 and colony formation assays, respectively. Glutathione (GSH)/glutathione disulfide (GSSG) ratio and GSH level were measured using the kit. Expression of GSH metabolism-related enzymes (G6PD, GCLM, and GCLC) was detected by western blot. Intracellular reactive oxygen species (ROS) levels were measured by the ROS Assay Kit. The transcription factor ELK1 upstream of KIFC1 was identified by hTFtarget, KnockTFv2 database and Pearson correlation. Their interaction was validated by dual-luciferase reporter assay and chromatin immunoprecipitation. RESULTS: This study demonstrated the upregulation of ELK1 and KIFC1 in BC and found that ELK1 could bind to the KIFC1 promoter to promote KIFC1 transcription. KIFC1 overexpression increased cell proliferation and intracellular GSH levels, while decreasing intracellular ROS levels. The addition of the GSH metabolism inhibitor BSO attenuated the promotion of BC cell proliferation induced by KIFC1 overexpression. In addition, KIFC1 overexpression reversed the inhibitory effect of knockdown of ELK1 on BC cell proliferation. CONCLUSION: ELK1 was a transcriptional factor of KIFC1. ELK1/KIFC1 axis reduced ROS level by increasing GSH synthesis, thus facilitating BC cell proliferation. Current observations suggest that ELK1/ KIFC1 may be a potential therapeutic target for BC treatment.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Proliferación Celular/genética , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Proteína Elk-1 con Dominio ets/farmacología
3.
Theriogenology ; 206: 170-180, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37224706

RESUMEN

A series of changes occur in the early embryo that are critical for subsequent development, and the pig is an excellent animal model of human disease, so understanding the regulatory mechanisms of early embryonic development in the pig is of very importance. To find key transcription factors regulating pig early embryonic development, we first profiled the transcriptome of pig early embryos, and confirmed that zygotic gene activation (ZGA) in porcine embryos starts from 4 cell stage. Subsequent enrichment analysis of up-regulated gene motifs during ZGA revealed that the transcription factor ELK1 ranked first. The expression pattern of ELK1 in porcine early embryos was analyzed by immunofluorescence staining and qPCR, and the results showed that the transcript level of ELK1 reached the highest at the 8 cell stage, while the protein level reached the highest at 4 cell stage. To further investigate the effect of ELK1 on early embryo development in pigs, we silenced ELK1 in zygotes and showed that ELK1 silencing significantly reduced cleavage rate, blastocyst rate as well as blastocyst quality. A significant decrease in the expression of the pluripotency gene Oct4 was also observed in blastocysts from the ELK1 silenced group by immunofluorescence staining. Silencing of ELK1 also resulted in decreased H3K9Ac modification and increased H3K9me3 modification at 4 cell stage. To investigate the effect of ELK1 on ZGA, we analyzed transcriptome changes in 4 cell embryos after ELK1 silencing by RNA seq, which revealed that ELK1 silencing resulted in significant differences in the expression of a total of 1953 genes at the 4 cell stage compared with their normal counterparts, including 1106 genes that were significantly upregulated and 847 genes that were significantly downregulated. Through GO and KEGG enrichment, we found that the functions and pathways of down-regulated genes were concentrated in protein synthesis, processing, cell cycle regulation, etc., while the functions of up-regulated genes were focused on aerobic respiration process. In conclusion, this study demonstrates that the transcription factor ELK1 plays an important role in regulation of preimplantation embryo development of pigs and deficiency of ELK1 leads to abnormal epigenetic reprogramming as well as zygotic genome activation, thus adversely affecting embryonic development. This study will provide important reference for the regulation of transcription factors in porcine embryo development.


Asunto(s)
Histonas , Lisina , Embarazo , Femenino , Porcinos , Humanos , Animales , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Proteína Elk-1 con Dominio ets/farmacología , Blastocisto , Desarrollo Embrionario , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica
4.
Biomed Pharmacother ; 109: 788-797, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551532

RESUMEN

Osteosarcoma (OS) is the commonest malignant bone tumor in the world. High incidence of OS has gradually become a social problem. Recent years, numerous studies have revealed that long non-coding RNAs (lncRNAs) are crucial regulators in the tumor progression. As a member of lncRNA family, MIR100HG has been reported to be an oncogene in breast cancer and acute megakaryoblastic leukemia. Nevertheless, the specific role of MIR100HG in osteosarcoma is still unclear. In this study, we investigated the biological function and molecular mechanism of MIR100HG in the progression of osteosarcoma. At first, we measured the high expression of MIR100HG in OS tissues and cell lines by qRT-PCR. Kaplan-Meier method revealed that high expression of MIR100HG is a factor for the poor prognosis of OS patients (P = 0.004). To explore the effect of MIR100HG on the biological processes of OS, loss-of-function assays were conducted in OS cells. Functionally, MIR100HG knockdown suppressed cell proliferation, cell cycle progression while promoted cell apoptosis. Mechanistically, MIR100HG was upregulated by the transcription factor ELK1. The upregulation of MIR100HG led to the inactivation of Hippo pathway. Furthermore, we found that MIR100HG inactivated Hippo pathway in OS cells by epigenetically silencing LATS1 and LATS2. Rescue assays demonstrated that LATS1/2 involved in MIR100HG-mediated OS progression. In summary, our study indicated that ELK1-induced upregulation of MIR100HG promoted OS progression by epigenetically silencing LATS1 and LATS2 and inactivating Hippo pathway.


Asunto(s)
Neoplasias Óseas/metabolismo , MicroARNs/biosíntesis , Osteosarcoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína Elk-1 con Dominio ets/farmacología , Adulto , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteosarcoma/genética , Osteosarcoma/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN Largo no Codificante/biosíntesis , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Proteína Elk-1 con Dominio ets/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA