RESUMEN
Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.
Asunto(s)
Proteínas Portadoras/genética , Proteínas Nucleares/genética , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , ADN , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Femenino , Inestabilidad Genómica , Mutación de Línea Germinal , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Reparación del ADN por RecombinaciónRESUMEN
Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.
Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Proteína Homóloga de MRE11/metabolismo , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunidad Innata , Proteína Homóloga de MRE11/química , Proteína Homóloga de MRE11/genética , Modelos Biológicos , Modelos Moleculares , Transducción de Señal , Telómero/metabolismoRESUMEN
Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.
Asunto(s)
Proteína BRCA2 , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple , Recombinasa Rad51 , Xenopus laevis , Humanos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Animales , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Microscopía por Crioelectrón , ADN Polimerasa theta , Metilación de ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genéticaRESUMEN
In Saccharomyces cerevisiae (S. cerevisiae), Mre11-Rad50-Xrs2 (MRX)-Sae2 nuclease activity is required for the resection of DNA breaks with secondary structures or protein blocks, while in humans, the MRE11-RAD50-NBS1 (MRN) homolog with CtIP is needed to initiate DNA end resection of all breaks. Phosphorylated Sae2/CtIP stimulates the endonuclease activity of MRX/N. Structural insights into the activation of the Mre11 nuclease are available only for organisms lacking Sae2/CtIP, so little is known about how Sae2/CtIP activates the nuclease ensemble. Here, we uncover the mechanism of Mre11 activation by Sae2 using a combination of AlphaFold2 structural modeling of biochemical and genetic assays. We show that Sae2 stabilizes the Mre11 nuclease in a conformation poised to cleave substrate DNA. Several designs of compensatory mutations establish how Sae2 activates MRX in vitro and in vivo, supporting the structural model. Finally, our study uncovers how human CtIP, despite considerable sequence divergence, employs a similar mechanism to activate MRN.
Asunto(s)
Proteínas de Unión al ADN , Endodesoxirribonucleasas , Endonucleasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Endonucleasas/metabolismo , Endonucleasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/química , Humanos , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Modelos Moleculares , Fosforilación , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Roturas del ADN de Doble Cadena , Ácido Anhídrido Hidrolasas/metabolismo , Ácido Anhídrido Hidrolasas/genética , Mutación , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Reparación del ADN , Activación EnzimáticaRESUMEN
In this issue of Molecular Cell, Rotheneder et al.1 elucidate the eukaroytic Mre11-Rad50-Nbs1 (MRN) complex quaternary architecture, which together with cryo-EM structures of bacterial Mre11-Rad50-DNA complexes,2 resolves the basis for MRN assembly and its broad nuclease specificity regulating DNA double-strand break repair.
Asunto(s)
Proteínas de Ciclo Celular , Enzimas Reparadoras del ADN , Proteína Homóloga de MRE11/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reparación del ADN , ADN/genética , Ácido Anhídrido Hidrolasas/genéticaRESUMEN
The DNA double-strand break repair complex Mre11-Rad50-Nbs1 (MRN) detects and nucleolytically processes DNA ends, activates the ATM kinase, and tethers DNA at break sites. How MRN can act both as nuclease and scaffold protein is not well understood. The cryo-EM structure of MRN from Chaetomium thermophilum reveals a 2:2:1 complex with a single Nbs1 wrapping around the autoinhibited Mre11 nuclease dimer. MRN has two DNA-binding modes, one ATP-dependent mode for loading onto DNA ends and one ATP-independent mode through Mre11's C terminus, suggesting how it may interact with DSBs and intact DNA. MRNs two 60-nm-long coiled-coil domains form a linear rod structure, the apex of which is assembled by the two joined zinc-hook motifs. Apices from two MRN complexes can further dimerize, forming 120-nm spanning MRN-MRN structures. Our results illustrate the architecture of MRN and suggest how it mechanistically integrates catalytic and tethering functions.
Asunto(s)
Reparación del ADN , ADN , Microscopía por Crioelectrón , ADN/genética , Ácido Anhídrido Hidrolasas/genética , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Adenosina Trifosfato/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMEN
POLθ promotes repair of DNA double-strand breaks (DSBs) resulting from collapsed forks in homologous recombination (HR) defective tumors. Inactivation of POLθ results in synthetic lethality with the loss of HR genes BRCA1/2, which induces under-replicated DNA accumulation. However, it is unclear whether POLθ-dependent DNA replication prevents HR-deficiency-associated lethality. Here, we isolated Xenopus laevis POLθ and showed that it processes stalled Okazaki fragments, directly visualized by electron microscopy, thereby suppressing ssDNA gaps accumulating on lagging strands in the absence of RAD51 and preventing fork reversal. Inhibition of POLθ DNA polymerase activity leaves fork gaps unprotected, enabling their cleavage by the MRE11-NBS1-CtIP endonuclease, which produces broken forks with asymmetric single-ended DSBs, hampering BRCA2-defective cell survival. These results reveal a POLθ-dependent genome protection function preventing stalled forks rupture and highlight possible resistance mechanisms to POLθ inhibitors.
Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas de Unión al ADN/genética , Recombinación Homóloga/genética , ADNRESUMEN
Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.
Asunto(s)
Proteína BRCA1/genética , ADN Ligasa (ATP)/genética , ADN de Cadena Simple , Proteína Homóloga de MRE11/genética , Neoplasias Ováricas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Animales , Biopsia , Sistemas CRISPR-Cas , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular , Aberraciones Cromosómicas , Daño del ADN , ADN Ligasa (ATP)/metabolismo , Femenino , Humanos , Lentivirus/genética , Neoplasias Mamarias Animales , Ratones , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Interferente Pequeño/metabolismo , TransgenesRESUMEN
PRIMPOL repriming allows DNA replication to skip DNA lesions, leading to ssDNA gaps. These gaps must be filled to preserve genome stability. Using a DNA fiber approach to directly monitor gap filling, we studied the post-replicative mechanisms that fill the ssDNA gaps generated in cisplatin-treated cells upon increased PRIMPOL expression or when replication fork reversal is defective because of SMARCAL1 inactivation or PARP inhibition. We found that a mechanism dependent on the E3 ubiquitin ligase RAD18, PCNA monoubiquitination, and the REV1 and POLζ translesion synthesis polymerases promotes gap filling in G2. The E2-conjugating enzyme UBC13, the RAD51 recombinase, and REV1-POLζ are instead responsible for gap filling in S, suggesting that temporally distinct pathways of gap filling operate throughout the cell cycle. Furthermore, we found that BRCA1 and BRCA2 promote gap filling by limiting MRE11 activity and that simultaneously targeting fork reversal and gap filling enhances chemosensitivity in BRCA-deficient cells.
Asunto(s)
Roturas del ADN de Cadena Simple , ADN Primasa/metabolismo , Reparación del ADN , Replicación del ADN , ADN de Neoplasias/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Fase G2 , Enzimas Multifuncionales/metabolismo , Neoplasias/metabolismo , Fase S , Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Línea Celular Tumoral , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Primasa/genética , ADN de Neoplasias/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Inestabilidad Genómica , Células HEK293 , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Enzimas Multifuncionales/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Tiempo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2ß-DNA cleavage complex (TOP2ßcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2ßcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.
Asunto(s)
ADN-Topoisomerasas de Tipo II/genética , Herpesvirus Humano 1/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-akt/genética , Latencia del Virus/genética , Animales , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Herpesvirus Humano 1/patogenicidad , Humanos , Proteína Homóloga de MRE11/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Neuronas/metabolismo , Neuronas/virología , Fosforilación , Ratas , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genéticaRESUMEN
MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.
Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Proteína Homóloga de MRE11/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Ácido Anhídrido Hidrolasas/genética , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Proteína Homóloga de MRE11/genética , Proteínas Mitocondriales/genética , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Estabilidad Proteica , Células Sf9 , SpodopteraRESUMEN
DNA double-strand breaks (DSBs) threaten genome stability throughout life and are linked to tumorigenesis in humans. To initiate DSB repair by end joining or homologous recombination, the Mre11-nuclease Rad50-ATPase complex detects and processes diverse and obstructed DNA ends, but a structural mechanism is still lacking. Here we report cryo-EM structures of the E. coli Mre11-Rad50 homolog SbcCD in resting and DNA-bound cutting states. In the resting state, Mre11's nuclease is blocked by ATP-Rad50, and the Rad50 coiled coils appear flexible. Upon DNA binding, the two coiled coils zip up into a rod and, together with the Rad50 nucleotide-binding domains, form a clamp around dsDNA. Mre11 moves to the side of Rad50, binds the DNA end, and assembles a DNA cutting channel for the nuclease reactions. The structures reveal how Mre11-Rad50 can detect and process diverse DNA ends and uncover a clamping and gating function for the coiled coils.
Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN Bacteriano/metabolismo , Desoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Exonucleasas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/ultraestructura , Microscopía por Crioelectrón , ADN Bacteriano/genética , ADN Bacteriano/ultraestructura , Desoxirribonucleasas/genética , Desoxirribonucleasas/ultraestructura , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Exonucleasas/genética , Exonucleasas/ultraestructura , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/ultraestructura , Conformación de Ácido Nucleico , Relación Estructura-ActividadRESUMEN
The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Ataxia Telangiectasia , Reparación del ADN , Proteínas de Unión al ADN , Proteína Homóloga de MRE11 , Ratones Transgénicos , Fenotipo , Animales , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Ratones , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Reparación del ADN/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Roturas del ADN de Doble CadenaRESUMEN
Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.
Asunto(s)
Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular , Ciclofilina A , Reparación del ADN , Replicación del ADN , Humanos , Ácido Anhídrido Hidrolasas/metabolismo , Ácido Anhídrido Hidrolasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ciclofilina A/metabolismo , Ciclofilina A/genética , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP)/metabolismo , ADN Ligasa (ATP)/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genéticaRESUMEN
The Mre11 nuclease has been the subject of intensive investigation for the past 20 years because of the central role that Mre11/Rad50 complexes play in genome maintenance. The last two decades of work on this complex has led to a much deeper understanding of the structure, biochemical activities, and regulation of Mre11/Rad50 complexes from archaea, bacteria, and eukaryotic cells. This review will discuss some of the important findings over recent years that have illuminated roles for the Mre11 nuclease in these different contexts as well as the insights from structural biology that have helped us to understand its mechanisms of action.
Asunto(s)
Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/fisiología , Ácido Anhídrido Hidrolasas , Animales , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11/genéticaRESUMEN
Eukaryotic chromosomal replication occurs in a segmented, temporal manner wherein open euchromatin and compact heterochromatin replicate during early and late S-phase respectively. Using single molecule DNA fiber analyses coupled with cell synchronization, we find that newly synthesized strands remain stable at perturbed forks in early S-phase. Unexpectedly, stalled forks are susceptible to nucleolytic digestion during late replication resulting in defective fork restart. This inherent vulnerability to nascent strand degradation is dependent on fork reversal enzymes and resection nucleases MRE11, DNA2 and EXO1. Inducing chromatin compaction elicits digestion of nascent DNA in response to fork stalling due to reduced association of RAD51 with nascent DNA. Furthermore, RAD51 occupancy at stalled forks in late S-phase is diminished indicating that densely packed chromatin limits RAD51 accessibility to mediate replication fork protection. Genetic analyses reveal that susceptibility of late replicating forks to nascent DNA digestion is dependent on EXO1 via DNA mismatch repair (MMR) and that the BRCA2-mediated replication fork protection blocks MMR from degrading nascent DNA. Overall, our findings illustrate differential regulation of fork protection between early and late replication and demonstrate nascent strand degradation as a critical determinant of heterochromatin instability in response to replication stress.
Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Exodesoxirribonucleasas , Recombinasa Rad51 , Fase S , Fase S/genética , Humanos , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , ADN/metabolismo , ADN/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Cromatina/metabolismoRESUMEN
Telomeres protect chromosome ends and are distinguished from DNA double-strand breaks (DSBs) by means of a specialized chromatin composed of DNA repeats bound by a multiprotein complex called shelterin. We investigated the role of telomere-associated proteins in establishing end-protection by studying viable mutants lacking these proteins. Mutants were studied using a Schizosaccharomyces pombe model system that induces cutting of a 'proto-telomere' bearing telomere repeats to rapidly form a new stable chromosomal end, in contrast to the rapid degradation of a control DSB. Cells lacking the telomere-associated proteins Taz1, Rap1, Poz1 or Rif1 formed a chromosome end that was stable. Surprisingly, cells lacking Ccq1, or impaired for recruiting Ccq1 to the telomere, converted the cleaved proto-telomere to a rapidly degraded DSB. Ccq1 recruits telomerase, establishes heterochromatin and affects DNA damage checkpoint activation; however, these functions were separable from protection of the new telomere by Ccq1. In cells lacking Ccq1, telomere degradation was greatly reduced by eliminating the nuclease activity of Mre11 (part of the Mre11-Rad50-Nbs1/Xrs2 DSB processing complex), and higher amounts of nuclease-deficient Mre11 associated with the new telomere. These results demonstrate a novel function for S. pombe Ccq1 to effect end-protection by restraining Mre11-dependent degradation of the DNA end.
Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Unión a Telómeros , Telómero , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Telómero/metabolismo , Telómero/genética , Complejo Shelterina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Telomerasa/metabolismo , Telomerasa/genética , Mutación , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genéticaRESUMEN
Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN , Proteínas de Xenopus , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Activación Enzimática/genética , Fosforilación/genéticaRESUMEN
PARP inhibitors (PARPi) show selective efficacy in tumors with homologous recombination repair (HRR)-defects but the activation mechanism of HRR pathway in PARPi-treated cells remains enigmatic. To unveil it, we searched for the mediator bridging PARP1 to ATM pathways by screening 211 human ubiquitin-related proteins. We discovered TRIM44 as a crucial mediator that recruits the MRN complex to damaged chromatin, independent of PARP1 activity. TRIM44 binds PARP1 and regulates the ubiquitination-PARylation balance of PARP1, which facilitates timely recruitment of the MRN complex for DSB repair. Upon exposure to PARPi, TRIM44 shifts its binding from PARP1 to the MRN complex via its ZnF UBP domain. Knockdown of TRIM44 in cells significantly enhances the sensitivity to olaparib and overcomes the resistance to olaparib induced by 53BP1 deficiency. These observations emphasize the central role of TRIM44 in tethering PARP1 to the ATM-mediated repair pathway. Suppression of TRIM44 may enhance PARPi effectiveness and broaden their use even to HR-proficient tumors.
Asunto(s)
Ftalazinas , Piperazinas , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Ftalazinas/farmacología , Piperazinas/farmacología , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Línea Celular Tumoral , Ubiquitinación , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN por Recombinación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Células HEK293 , Unión Proteica , Cromatina/metabolismo , Roturas del ADN de Doble CadenaRESUMEN
Replication repriming by the specialized primase-polymerase PRIMPOL ensures the continuity of DNA synthesis during replication stress. PRIMPOL activity generates residual post-replicative single-stranded nascent DNA gaps, which are linked with mutagenesis and chemosensitivity in BRCA1/2-deficient models, and which are suppressed by replication fork reversal mediated by the DNA translocases SMARCAL1 and ZRANB3. Here, we report that the MRE11 regulator MRNIP limits the prevalence of PRIMPOL and MRE11-dependent ssDNA gaps in cells in which fork reversal is perturbed either by treatment with the PARP inhibitor Olaparib, or by depletion of SMARCAL1 or ZRANB3. MRNIP-deficient cells are sensitive to PARP inhibition and accumulate PRIMPOL-dependent DNA damage, supportive of a pro-survival role for MRNIP linked to the regulation of gap prevalence. In MRNIP-deficient cells, post-replicative gap filling is driven in S-phase by UBC13-mediated template switching involving REV1 and the TLS polymerase Pol-ζ. Our findings represent the first report of modulation of post-replicative ssDNA gap dynamics by a direct MRE11 regulator.