Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Microbiol ; 115(4): 526-538, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33012071

RESUMEN

Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen metabolism, GlnB. GlnB interacted with AspA and stimulated its L-aspartate deaminase activity (NH3 -forming), but not the reverse amination reaction. GlnB stimulation required 2-oxoglutarate and ATP, or uridylylated GlnB-UMP, consistent with the activation of nitrogen assimilation under nitrogen limitation. Binding to AspA was lost in the GlnB(Y51F) mutant of the uridylylation site. AspA, therefore, represents a new type of GlnB target that binds GlnB (with ATP and 2-oxoglutarate), or GlnB-UMP (with or without effectors), and both situations stimulate AspA deamination activity. Thus, AspA represents the central enzyme for nitrogen assimilation from L-aspartate, and AspA is integrated into the nitrogen assimilation network by the regulator GlnB.


Asunto(s)
Aspartato Amoníaco-Liasa/metabolismo , Ácido Aspártico/metabolismo , Proteínas Bacterianas/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/fisiología , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Amoníaco/metabolismo , Ácido Aspártico/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Redes y Vías Metabólicas , Mutación , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Dominios y Motivos de Interacción de Proteínas
2.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884470

RESUMEN

The PII protein is an evolutionary, highly conserved regulatory protein found in both bacteria and higher plants. In bacteria, it modulates the activity of several enzymes, transporters, and regulatory factors by interacting with them and thereby regulating important metabolic hubs, such as carbon/nitrogen homeostasis. More than two decades ago, the PII protein was characterized for the first time in plants, but its physiological role is still not sufficiently resolved. To gain more insights into the function of this protein, we investigated the interaction behavior of AtPII with candidate proteins by BiFC and FRET/FLIM in planta and with GFP/RFP traps in vitro. In the course of these studies, we found that AtPII interacts in chloroplasts with itself as well as with known interactors such as N-acetyl-L-glutamate kinase (NAGK) in dot-like aggregates, which we named PII foci. In these novel protein aggregates, AtPII also interacts with yet unknown partners, which are known to be involved in plastidic protein degradation. Further studies revealed that the C-terminal component of AtPII is crucial for the formation of PII foci. Altogether, the discovery and description of PII foci indicate a novel mode of interaction between PII proteins and other proteins in plants. These findings may represent a new starting point for the elucidation of physiological functions of PII proteins in plants.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteolisis
3.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445335

RESUMEN

Protein inhibition is a natural regulatory process to control cellular metabolic fluxes. PII-family signal-transducing effectors are in this matter key regulators of the nitrogen metabolism. Their interaction with their various targets is governed by the cellular nitrogen level and the energy charge. Structural studies on GlnK, a PII-family inhibitor of the ammonium transporters (Amt), showed that the T-loops responsible for channel obstruction are displaced upon the binding of 2-oxoglutarate, magnesium and ATP in a conserved cleft. However, GlnK from Methanocaldococcus jannaschii was shown to bind 2-oxoglutarate on the tip of its T-loop, causing a moderate disruption to GlnK-Amt interaction, raising the question if methanogenic archaea use a singular adaptive strategy. Here we show that membrane fractions of Methanothermococcus thermolithotrophicus released GlnKs only in the presence of Mg-ATP and 2-oxoglutarate. This observation led us to structurally characterize the two GlnK isoforms apo or in complex with ligands. Together, our results show that the 2-oxoglutarate binding interface is conserved in GlnKs from Methanococcales, including Methanocaldococcus jannaschii, emphasizing the importance of a free carboxy-terminal group to facilitate ligand binding and to provoke the shift of the T-loop positions.


Asunto(s)
Compuestos de Amonio/metabolismo , Ácidos Cetoglutáricos/metabolismo , Methanococcales/metabolismo , Proteínas PII Reguladoras del Nitrógeno , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Transporte Iónico , Redes y Vías Metabólicas , Modelos Moleculares , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Análisis de Secuencia de Proteína
4.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060028

RESUMEN

PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria.IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Alineación de Secuencia
5.
Biochemistry ; 56(25): 3211-3224, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28581722

RESUMEN

PipX, an 89-residue protein, acts as a coactivator of the global nitrogen regulator NtcA in cyanobacteria. NtcA-PipX interactions are regulated by 2-oxoglutarate (2-OG), an inverse indicator of the ammonia abundance, and by PII, a protein that binds to PipX at low 2-OG concentrations. The structure of PipX, when bound to NtcA or PII, consists of an N-terminal, five-stranded ß-sheet (conforming a Tudor-like domain), and two long α-helices. These helices adopt either a flexed conformation, where they are in close contact and in an antiparallel mutual orientation, also packing against the ß-sheet, or an open conformation (observed only in the PII-PipX complex) where the last α-helix moves apart from the rest of the protein. The aim of this work was to study the structure and dynamics of isolated PipX in solution by NMR. The backbone chemical shifts, the hydrogen-exchange, and the NOE patterns indicated that the isolated, monomeric PipX structure was formed by an N-terminal five-stranded ß-sheet and two C-terminal α-helices. Furthermore, the observed NOEs between the two helices, and of α-helix2 with ß-strand2 suggested that PipX adopted a flexed conformation. The ß-strands 1 and 5 were highly flexible, as shown by the lack of interstrand backbone-backbone NOEs; in addition, the 15N-dynamics indicated that the C terminus of ß-strand4 and the following ß-turn (Phe42-Thr47), and the C-cap of α-helix1 (Arg70-Asn71) were particularly mobile. These two regions could act as hinges, allowing PipX to interact with its partners, including PlmA in the newly recognized PII-PipX-PlmA ternary complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Proteínas PII Reguladoras del Nitrógeno/química , Conformación Proteica , Transducción de Señal , Synechococcus/metabolismo , Factores de Transcripción/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Mar Drugs ; 15(10)2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29019908

RESUMEN

The PII signaling protein is a key protein for controlling nitrogen assimilatory reactions in most organisms, but little information is reported on PII proteins of green microalga Haematococcus pluvialis. Since H. pluvialis cells can produce a large amount of astaxanthin upon nitrogen starvation, its PII protein may represent an important factor on elevated production of Haematococcus astaxanthin. This study identified and isolated the coding gene (HpGLB1) from this microalga. The full-length of HpGLB1 was 1222 bp, including 621 bp coding sequence (CDS), 103 bp 5' untranslated region (5' UTR), and 498 bp 3' untranslated region (3' UTR). The CDS could encode a protein with 206 amino acids (HpPII). Its calculated molecular weight (Mw) was 22.4 kDa and the theoretical isoelectric point was 9.53. When H. pluvialis cells were exposed to nitrogen starvation, the HpGLB1 expression was increased 2.46 times in 48 h, concomitant with the raise of astaxanthin content. This study also used phylogenetic analysis to prove that HpPII was homogeneous to the PII proteins of other green microalgae. The results formed a fundamental basis for the future study on HpPII, for its potential physiological function in Haematococcus astaxanthin biosysthesis.


Asunto(s)
Chlorophyta/metabolismo , Microalgas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Secuencia de Aminoácidos , Chlorophyta/genética , Punto Isoeléctrico , Microalgas/genética , Peso Molecular , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Filogenia , Transducción de Señal , Factores de Tiempo , Xantófilas/biosíntesis
7.
Biochim Biophys Acta ; 1834(12): 2736-49, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24129075

RESUMEN

We investigated the interacting amino acids critical for the stability and ATP binding of Mycobacterium tuberculosis PII protein through a series of site specific mutagenesis experiments. We assessed the effect of mutants using glutaraldehyde crosslinking and size exclusion chromatography and isothermal titration calorimetry. Mutations in the amino acid pair R60-E62 affecting central electrostatic interaction resulted in insoluble proteins. Multiple sequence alignment of PII orthologs displayed a conserved pattern of charged residues at these positions. Mutation of amino acid D97 to a neutral residue was tolerated whereas positive charge was not acceptable. Mutation of R107 alone had no effect on trimer formation. However, the combination of neutral residues both at positions 97 and 107 was not acceptable even with the pair at 60-62 intact. Reversal of charge polarity could partially restore the interaction. The residues including K90, R101 and R103 with potential to form H-bonds to ATP are conserved throughout across numerous orthologs of PII but when mutated to Alanine, they did not show significant differences in the total free energy change of the interaction as examined through isothermal titration calorimetry. The ATP binding pattern showed anti-cooperativity using three-site binding model. We observed compensatory effect in enthalpy and entropy changes and these may represent structural adjustments to accommodate ATP in the cavity even in absence of some interactions to perform the requisite function. In this respect these small differences between the PII orthologs may have evolved to suite species specific physiological niches.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Proteínas PII Reguladoras del Nitrógeno/química , Multimerización de Proteína/fisiología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular , Mutación Missense , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
8.
Proteins ; 82(6): 1048-59, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24218085

RESUMEN

PII protein is one of the largest families of signal transduction proteins in archaea, bacteria, and plants, controlling key processes of nitrogen assimilation. An intriguing characteristic for many PII proteins is that the three ligand binding sites exhibit anticooperative allosteric regulation. In this work, PII protein from Synechococcus elongatus, a model for cyanobacteria and plant PII proteins, is utilized to reveal the anticooperative mechanism upon binding of 2-oxoglutarate (2-OG). To this end, a method is proposed to define the binding pocket size by identifying residues that contribute greatly to the binding of 2-OG. It is found that the anticooperativity is realized through population shift of the binding pocket size in an asymmetric manner. Furthermore, a new algorithm based on the dynamic correlation analysis is developed and utilized to discover residues that mediate the anticooperative process with high probability. It is surprising to find that the T-loop, which is believed to be responsible for mediating the binding of PII with its target proteins, also takes part in the intersubunit signal transduction process. Experimental results of PII variants further confirmed the influence of T-loop on the anticooperative regulation, especially on binding of the third 2-OG. These discoveries extend our understanding of the PII T-loop from being essential in versatile binding of target protein to signal-mediating in the anticooperative allosteric regulation.


Asunto(s)
Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Proteínas PII Reguladoras del Nitrógeno/química , Regulación Alostérica , Sitios de Unión , Enlace de Hidrógeno , Ácidos Cetoglutáricos/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal , Synechococcus , Termodinámica
9.
Proc Natl Acad Sci U S A ; 108(47): 18972-6, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22074780

RESUMEN

Nitrogen metabolism in bacteria and archaea is regulated by a ubiquitous class of proteins belonging to the P(II)family. P(II) proteins act as sensors of cellular nitrogen, carbon, and energy levels, and they control the activities of a wide range of target proteins by protein-protein interaction. The sensing mechanism relies on conformational changes induced by the binding of small molecules to P(II) and also by P(II) posttranslational modifications. In the diazotrophic bacterium Azospirillum brasilense, high levels of extracellular ammonium inactivate the nitrogenase regulatory enzyme DraG by relocalizing it from the cytoplasm to the cell membrane. Membrane localization of DraG occurs through the formation of a ternary complex in which the P(II) protein GlnZ interacts simultaneously with DraG and the ammonia channel AmtB. Here we describe the crystal structure of the GlnZ-DraG complex at 2.1 Å resolution, and confirm the physiological relevance of the structural data by site-directed mutagenesis. In contrast to other known P(II) complexes, the majority of contacts with the target protein do not involve the T-loop region of P(II). Hence this structure identifies a different mode of P(II) interaction with a target protein and demonstrates the potential for P(II) proteins to interact simultaneously with two different targets. A structural model of the AmtB-GlnZ-DraG ternary complex is presented. The results explain how the intracellular levels of ATP, ADP, and 2-oxoglutarate regulate the interaction between these three proteins and how DraG discriminates GlnZ from its close paralogue GlnB.


Asunto(s)
Azospirillum brasilense/enzimología , Proteínas Bacterianas/química , Modelos Moleculares , Complejos Multiproteicos/química , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Conformación Proteica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/fisiología , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Cristalización , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Nitrogenasa/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Compuestos de Amonio Cuaternario/metabolismo
10.
Biochemistry ; 52(15): 2683-93, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23517273

RESUMEN

PII proteins are important regulators of nitrogen metabolism in a wide variety of organisms: the binding of the allosteric effectors ATP, ADP, and 2-oxoglutarate (2-OG) to PII proteins affects their ability to interact with target proteins. We modeled the simultaneous binding of ATP, ADP, and 2-OG to one PII protein, namely GlnB of Escherichia coli, using a modeling approach that allows the prediction of the proportions of individual binding states. Four models with different binding rules were compared. We selected one of these models (that assumes that the binding of the first nucleotide to GlnB makes it harder for subsequent nucleotides to bind) and used it to explore how physiological concentrations of ATP, ADP, and 2-OG would affect the proportions of those states of GlnB that interact with the target proteins ATase and NtrB. Our simulations indicate that GlnB can, as suggested by previous researchers, act as a sensor of both 2-OG and the ATP:ADP ratio. We conclude that our modeling approach will be an important tool in future studies concerning the PII binding states and their interactions with target proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Teóricos , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ligandos , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo
11.
FASEB J ; 26(2): 868-81, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22071506

RESUMEN

Allostery offers a highly specific way to modulate protein function. Therefore, understanding this mechanism is of increasing interest for protein science and drug discovery. However, allosteric signal transmission is difficult to detect experimentally and to model because it is often mediated by local structural changes propagating along multiple pathways. To address this, we developed a method to identify communication pathways by an information-theoretical analysis of molecular dynamics simulations. Signal propagation was described as information exchange through a network of correlated local motions, modeled as transitions between canonical states of protein fragments. The method was used to describe allostery in two-component regulatory systems. In particular, the transmission from the allosteric site to the signaling surface of the receiver domain NtrC was shown to be mediated by a layer of hub residues. The location of hubs preferentially connected to the allosteric site was found in close agreement with key residues experimentally identified as involved in the signal transmission. The comparison with the networks of the homologues CheY and FixJ highlighted similarities in their dynamics. In particular, we showed that a preorganized network of fragment connections between the allosteric and functional sites exists already in the inactive state of all three proteins.


Asunto(s)
Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Regulación Alostérica , Sitio Alostérico , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Teoría de la Información , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo , Modelos Moleculares , Simulación de Dinámica Molecular/estadística & datos numéricos , Datos de Secuencia Molecular , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Conformación Proteica , Homología de Secuencia de Aminoácido , Transducción de Señal , Programas Informáticos , Factores de Transcripción/química , Factores de Transcripción/genética
12.
J Chem Phys ; 138(4): 044105, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23387566

RESUMEN

We introduce an extension to the weighted ensemble (WE) path sampling method to restrict sampling to a one-dimensional path through a high dimensional phase space. Our method, which is based on the finite-temperature string method, permits efficient sampling of both equilibrium and non-equilibrium systems. Sampling obtained from the WE method guides the adaptive refinement of a Voronoi tessellation of order parameter space, whose generating points, upon convergence, coincide with the principle reaction pathway. We demonstrate the application of this method to several simple, two-dimensional models of driven Brownian motion and to the conformational change of the nitrogen regulatory protein C receiver domain using an elastic network model. The simplicity of the two-dimensional models allows us to directly compare the efficiency of the WE method to conventional brute force simulations and other path sampling algorithms, while the example of protein conformational change demonstrates how the method can be used to efficiently study transitions in the space of many collective variables.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas PII Reguladoras del Nitrógeno/química , Algoritmos , Conformación Proteica
13.
Proc Natl Acad Sci U S A ; 107(46): 19760-5, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21041661

RESUMEN

P(II) proteins control key processes of nitrogen metabolism in bacteria, archaea, and plants in response to the central metabolites ATP, ADP, and 2-oxoglutarate (2-OG), signaling cellular energy and carbon and nitrogen abundance. This metabolic information is integrated by P(II) and transmitted to regulatory targets (key enzymes, transporters, and transcription factors), modulating their activity. In oxygenic phototrophs, the controlling enzyme of arginine synthesis, N-acetyl-glutamate kinase (NAGK), is a major P(II) target, whose activity responds to 2-OG via P(II). Here we show structures of the Synechococcus elongatus P(II) protein in complex with ATP, Mg(2+), and 2-OG, which clarify how 2-OG affects P(II)-NAGK interaction. P(II) trimers with all three sites fully occupied were obtained as well as structures with one or two 2-OG molecules per P(II) trimer. These structures identify the site of 2-OG located in the vicinity between the subunit clefts and the base of the T loop. The 2-OG is bound to a Mg(2+) ion, which is coordinated by three phosphates of ATP, and by ionic interactions with the highly conserved residues K58 and Q39 together with B- and T-loop backbone interactions. These interactions impose a unique T-loop conformation that affects the interactions with the P(II) target. Structures of P(II) trimers with one or two bound 2-OG molecules reveal the basis for anticooperative 2-OG binding and shed light on the intersubunit signaling mechanism by which P(II) senses effectors in a wide range of concentrations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Transducción de Señal , Synechococcus/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Ácidos Cetoglutáricos/química , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Estereoisomerismo , Synechococcus/enzimología
14.
Proc Natl Acad Sci U S A ; 107(35): 15397-402, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20716687

RESUMEN

PII, an ancient and widespread signaling protein, transduces nitrogen/carbon/energy abundance signals through interactions with target proteins. We clarify structurally how PII regulates gene expression mediated by the transcription factor NtcA, the global nitrogen regulator of cyanobacteria, shedding light on NtcA structure and function and on how NtcA is activated by 2-oxoglutarate (2OG) and coactivated by the nonenzymatic PII target, protein PipX. We determine for the cyanobacteria Synechococcus elongatus the crystal structures of the PII-PipX and PipX-NtcA complexes and of NtcA in active and inactive conformations (respective resolutions, 3.2, 2.25, 2.3, and 3.05 A). The structures and the conclusions derived from them are consistent with the results of present and prior site-directed mutagenesis and functional studies. A tudor-like domain (TLD) makes up most of the PipX structure and mediates virtually all the contacts of PipX with PII and NtcA. In the PII-PipX complex, one PII trimer sequesters the TLDs of three PipX molecules between its body and its extended T loops, preventing PipX activation of NtcA. Changes in T loop conformation triggered by 2OG explain PII-PipX dissociation when 2OG is bound. The structure of active dimeric NtcA closely resembles that of the active cAMP receptor protein (CRP). This strongly suggests that with these proteins DNA binding, transcription activation, and allosteric regulation occur by common mechanisms, although the effectors are different. The PipX-NtcA complex consists of one active NtcA dimer and two PipX monomers. PipX coactivates NtcA by stabilizing its active conformation and by possibly helping recruit RNA polymerase but not by providing extra DNA contacts.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Proteínas PII Reguladoras del Nitrógeno/química , Factores de Transcripción/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Cristalización , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Ácidos Cetoglutáricos/farmacología , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Synechococcus/genética , Synechococcus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Técnicas del Sistema de Dos Híbridos
15.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 8): 901-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22868755

RESUMEN

PII proteins are central signal processing units for the regulation of nitrogen metabolism in bacteria, archaea and plants. They act in response to cellular energy, carbon and nitrogen availability. The central metabolites ATP, ADP and 2-oxoglutarate, which indicate cellular energy and carbon/nitrogen abundance, bind in a highly organized manner to PII and induce effector-molecule-dependent conformational states of the T-loop. Depending on these states, PII proteins bind and modulate the activity of various regulatory targets. A mutant variant of the Synechococcus elongatus PII protein (PII-I86N) has been identified to have impaired 2-oxoglutarate binding. Here, the PII-I86N variant was cocrystallized in the presence of ATP, magnesium and citrate and its structure was solved at a resolution of 1.05 Å. The PII-I86N variant bound citrate in place of 2-oxoglutarate. Citrate binding is mediated primarily by interactions with the ATP-coordinated magnesium ion and the backbone atoms of the T-loop. Citrate binding rearranges the conformation of the T-loop and, consistent with this, citrate suppresses the binding of PII-I86N to an NAG kinase variant, which is similar to the suppression of PII-NAG kinase complex formation by 2-OG. Based on the structures of 2-OG and citrate, homocitrate was suggested as a third ligand and an efficient response towards this molecule with different functional properties was observed. Together, these data provide a first glimpse of a genetically engineered PII variant that senses a new effector molecule.


Asunto(s)
Proteínas PII Reguladoras del Nitrógeno/química , Ingeniería de Proteínas/métodos , Synechococcus/química , Sitios de Unión , Citratos/química , Cristalización , Cristalografía por Rayos X/métodos , Ligandos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Transducción de Señal , Resonancia por Plasmón de Superficie
16.
Protein Expr Purif ; 81(1): 83-88, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21963770

RESUMEN

The P(II) proteins comprise a family of widely distributed signal transduction proteins that integrate the signals of cellular nitrogen, carbon and energy status, and then regulate, by protein-protein interaction, the activity of a variety of target proteins including enzymes, transcriptional regulators and membrane transporters. We have previously shown that the P(II) proteins from Azospirillum brasilense, GlnB and GlnZ, do not alter their migration behavior under native gel electrophoresis following incubated for a few minutes at 95°C. This data suggested that P(II) proteins were either resistant to high temperatures and/or that they could return to their native state after having been unfolded by heat. Here we used (1)H NMR to show that the A. brasilense GlnB is stable up to 70°C. The melting temperature (Tm) of GlnB was determined to be 84°C using the fluorescent dye Sypro-Orange. P(II) proteins from other Proteobacteria also showed a high Tm. We exploited the thermo stability of P(II) by introducing a thermal treatment step in the P(II) purification protocol, this step significantly improved the homogeneity of A. brasilense GlnB and GlnZ, Herbaspirillum seropedicae GlnB and GlnK, and of Escherichia coli GlnK. Only a single chromatography step was necessary to obtain homogeneities higher than 95%. NMR(1) and in vitro uridylylation analysis showed that A. brasilense GlnB purified using the thermal treatment maintained its folding and activity. The purification protocol described here can facilitate the study of P(II) protein family members.


Asunto(s)
Proteínas Bacterianas/química , Cromatografía de Afinidad/métodos , Proteínas PII Reguladoras del Nitrógeno/química , Azospirillum brasilense/enzimología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas PII Reguladoras del Nitrógeno/aislamiento & purificación , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Temperatura de Transición
17.
Biochemistry ; 50(50): 10929-40, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22085244

RESUMEN

Glutamine synthetase (GS) activity in Escherichia coli is regulated by reversible adenylylation, brought about by a bicyclic system comprised of uridylyltransferase/uridylyl-removing enzyme (UTase/UR), its substrate, PII, adenylyltransferase (ATase), and its substrate, GS. The modified and unmodified forms of PII produced by the upstream UTase/UR-PII cycle regulate the downstream ATase-GS cycle. A reconstituted UTase/UR-PII-ATase-GS bicyclic system has been shown to produce a highly ultrasensitive response of GS adenylylation state to the glutamine concentration, but its composite UTase/UR-PII and ATase-GS cycles displayed moderate glutamine sensitivities when examined separately. Glutamine sensitivity of the bicyclic system was significantly reduced when the trimeric PII protein was replaced by a heterotrimeric form of PII that was functionally monomeric, and coupling between the two cycles was different in systems containing wild-type or heterotrimeric PII. Thus, the trimeric nature of PII played a role in the glutamine response of the bicyclic system. We therefore examined regulation of the individual AT (adenylylation) and AR (deadenylylation) activities of ATase by PII preparations with various levels of uridylylation. AR activity was affected in a linear fashion by PII uridylylation, but partially modified wild-type PII activated the AT much less than expected based on the extent of PII modification. Partially modified wild-type PII also bound to ATase less than expected based upon the fraction of modified subunits. Our results suggest that the AT activity is only bound and activated by completely unmodified PII and that this design is largely responsible for ultrasensitivity of the bicyclic system.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Procesamiento Proteico-Postraduccional , Activación Enzimática , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/genética , Cinética , Peso Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal
18.
Biochem Soc Trans ; 39(1): 189-94, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21265771

RESUMEN

PII proteins are one of the most widely distributed signal transduction proteins in Nature, being ubiquitous in bacteria, archaea and plants. They act by protein-protein interaction to control the activities of a wide range of enzymes, transcription factors and transport proteins, the great majority of which are involved in cellular nitrogen metabolism. The regulatory activities of PII proteins are mediated through their ability to bind the key effector metabolites 2-OG (2-oxoglutarate), ATP and ADP. However, the molecular basis of these regulatory effects remains unclear. Recent advances in the solution of the crystal structures of PII proteins complexed with some of their target proteins, as well as the identification of the ATP/ADP- and 2-OG-binding sites, have improved our understanding of their mode of action. In all of the complex structures solved to date, the flexible T-loops of PII facilitate interaction with the target protein. The effector molecules appear to play a key role in modulating the conformation of the T-loops and thereby regulating the interactions between PII and its targets.


Asunto(s)
Proteínas PII Reguladoras del Nitrógeno/metabolismo , Transducción de Señal/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Conformación Proteica
19.
Artículo en Inglés | MEDLINE | ID: mdl-21543862

RESUMEN

Nitrogen fixation is catalyzed by the nitrogenase complex in Azotobacter, which is composed of dinitrogenase and dinitrogenase reductase. Dinitrogenase is an α(2)ß(2) heterotetramer of the proteins NifD and NifK. Dinitrogenase reductase is a homodimer of the protein NifH. The expression of NifD/K and NifH nitrogenase homologues (named NflD/K and NflH for Nif-like D and H, respectively) has been detected in the non-nitrogen-fixing hyperthermophilic methanogen Methanocaldococcus jannaschii. Solving the structure of MjNifH1 may help in better understanding its function and may supply some clues to understanding the evolution of nitrogenase. The full-length protein with an additional His(6) tag at the C-terminus was expressed, purified and crystallized by the hanging-drop vapour-diffusion method at 287 K. An X-ray diffraction data set was collected to a resolution of 3.3 Å. The crystal belonged to space group P4(1)32, with unit-cell parameters a = b = c = 139.45 Å, and was estimated to contain one protein molecule per asymmetric unit.


Asunto(s)
Proteínas Arqueales/química , Oxidorreductasas/química , Proteínas PII Reguladoras del Nitrógeno/química , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Expresión Génica , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/aislamiento & purificación
20.
Artículo en Inglés | MEDLINE | ID: mdl-21301082

RESUMEN

GlnB and GlnK are ancient signalling proteins that play a crucial role in the regulation of nitrogen assimilation. Both protein types can be present in the same genome as either single or multiple copies. However, the gene product of glnK is always found in an operon together with an amt gene encoding an ammonium-transport (Amt) protein. Complex formation between GlnK and Amt blocks ammonium uptake and depends on the nitrogen level in the cell, which is regulated through the binding of specific effector molecules to GlnK. In particular, an ammonium shock to a cell culture previously starved in this nitrogen source or the binding of ATP to purified GlnK can stimulate effective complex formation. While the binding of ATP/ADP and 2-oxoglutarate (as a signal for low intracellular nitrogen) to GlnK have been reported and several GlnB/K protein structures are available, essential functional questions remain unanswered. Here, the crystal structure of A. fulgidus GlnK1 at 2.28 Šresolution and a comparison with the crystal structures of other GlnK proteins, in particular with that of its paralogue GlnK2 from the same organism, is reported.


Asunto(s)
Proteínas Arqueales/química , Archaeoglobus fulgidus/química , Proteínas PII Reguladoras del Nitrógeno/química , Transducción de Señal/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/genética , Archaeoglobus fulgidus/metabolismo , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Cristalografía por Rayos X/métodos , Escherichia coli/genética , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Operón , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Homología de Secuencia de Aminoácido , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA