Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 76(4): 546-561.e8, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31561952

RESUMEN

Through transcriptional control of the evolutionarily conserved heat shock, or proteotoxic stress, response, heat shock factor 1 (HSF1) preserves proteomic stability. Here, we show that HSF1, a physiological substrate for AMP-activated protein kinase (AMPK), constitutively suppresses this central metabolic sensor. By physically evoking conformational switching of AMPK, HSF1 impairs AMP binding to the γ subunits and enhances the PP2A-mediated de-phosphorylation, but it impedes the LKB1-mediated phosphorylation of Thr172, and retards ATP binding to the catalytic α subunits. These immediate and manifold regulations empower HSF1 to both repress AMPK under basal conditions and restrain its activation by diverse stimuli, thereby promoting lipogenesis, cholesterol synthesis, and protein cholesteroylation. In vivo, HSF1 antagonizes AMPK to control body fat mass and drive the lipogenic phenotype and growth of melanomas independently of its intrinsic transcriptional action. Thus, the physical AMPK-HSF1 interaction epitomizes a reciprocal kinase-substrate regulation whereby lipid metabolism and proteomic stability intertwine.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adiposidad , Animales , Sitios de Unión , Proliferación Celular , Colesterol/biosíntesis , Células HEK293 , Células HeLa , Factores de Transcripción del Choque Térmico/deficiencia , Factores de Transcripción del Choque Térmico/genética , Humanos , Lipogénesis , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Fosforilación , Conformación Proteica , Estabilidad Proteica , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Relación Estructura-Actividad
2.
Mol Cell ; 66(6): 789-800, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622524

RESUMEN

AMPK is a highly conserved master regulator of metabolism, which restores energy balance during metabolic stress both at the cellular and physiological levels. The identification of numerous AMPK targets has helped explain how AMPK restores energy homeostasis. Recent advancements illustrate novel mechanisms of AMPK regulation, including changes in subcellular localization and phosphorylation by non-canonical upstream kinases. Notably, the therapeutic potential of AMPK is widely recognized and heavily pursued for treatment of metabolic diseases such as diabetes, but also obesity, inflammation, and cancer. Moreover, the recently solved crystal structure of AMPK has shed light both into how nucleotides activate AMPK and, importantly, also into the sites bound by small molecule activators, thus providing a path for improved drugs.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Transducción de Señal , Proteínas Quinasas Activadas por AMP/química , Animales , Autofagia , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Activadores de Enzimas/uso terapéutico , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/enzimología , Enfermedades Metabólicas/patología , Mitocondrias/enzimología , Mitocondrias/patología , Mitofagia , Modelos Moleculares , Fosforilación , Conformación Proteica , Proteolisis , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/metabolismo
3.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38592738

RESUMEN

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adenosina Difosfato , Adenosina Monofosfato , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Humanos , Regulación Alostérica , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/química , Ligandos , Fosforilación , Adenosina Trifosfato/metabolismo , Activación Enzimática , Unión Proteica
4.
Nat Rev Mol Cell Biol ; 13(4): 251-62, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22436748

RESUMEN

AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético/fisiología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apetito/fisiología , Ritmo Circadiano/fisiología , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Hipotálamo/metabolismo , Mamíferos/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Xenobióticos/farmacología
5.
FASEB J ; 35(10): e21932, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34549830

RESUMEN

Myocardial fibrosis is a characteristic of various cardiomyopathies, and myocardial fibroblasts play a central role in this process. Gelsolin (GSN) is an actin severing and capping protein that regulates actin assembly and may be involved in fibroblast activation. While the role of GSN in mechanical stress-mediated cardiac fibrosis has been explored, its role in myocardial fibrosis in the absence of mechanical stress is not defined. In this study, we investigated the role of GSN in myocardial fibrosis induced by Angiotensin II (Ang II), a profibrotic hormone that is elevated in cardiovascular disease. We utilized mice lacking GSN (Gsn-/- ) and cultured primary adult cardiac fibroblasts (cFB). In vivo, Ang II infusion in mice resulted in significantly less severe myocardial fibrosis in Gsn-/- compared with Gsn+/+ mice, along with diminished activation of the TGFß1-Smad2/3 pathway, and reduced expression of cardiac extracellular matrix proteins (collagen, fibronectin, periostin). Moreover, Gsn-deficient hearts exhibited suppressed activity of the AMPK pathway and its downstream effectors, mTOR and P70S6Kinase, which could contribute to the suppressed TGFß1 activity. In vitro, the Ang II-induced activation of cFBs was reduced in Gsn-deficient fibroblasts evident from decreased expression of αSMA and periostin, diminished actin filament turnover; which also exhibited reduced activity of the AMPK-mTOR pathway, and P70S6K phosphorylation. AMPK inhibition compensated for the loss of GSN, restored the levels of G-actin in Gsn-/- cFBs and promoted activation to myofibroblasts by increasing αSMA and periostin levels. This study reveals a novel role for GSN in mediating myocardial fibrosis by regulating the AMPK-mTOR-P70S6K pathway in cFB activation independent from mechanical stress-induced factors.


Asunto(s)
Angiotensina II/farmacología , Fibroblastos/efectos de los fármacos , Fibrosis/patología , Gelsolina/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Actinas/metabolismo , Animales , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/metabolismo , Gelsolina/deficiencia , Gelsolina/genética , Homeostasis , Masculino , Ratones , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
6.
PLoS Comput Biol ; 16(7): e1008079, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32730244

RESUMEN

Exercise training elicits profound metabolic adaptations in skeletal muscle cells. A key molecule in coordinating these adaptations is AMP-activated protein kinase (AMPK), whose activity increases in response to cellular energy demand. AMPK activity dynamics are primarily controlled by the adenine nucleotides ADP and AMP, but how each contributes to its control in skeletal muscle during exercise is unclear. We developed and validated a mathematical model of AMPK signaling dynamics, and then applied global parameter sensitivity analyses with data-informed constraints to predict that AMPK activity dynamics are determined principally by ADP and not AMP. We then used the model to predict the effects of two additional direct-binding activators of AMPK, ZMP and Compound 991, further validating the model and demonstrating its applicability to understanding AMPK pharmacology. The relative effects of direct-binding activators can be understood in terms of four properties, namely their concentrations, binding affinities for AMPK, abilities to enhance AMPK phosphorylation, and the magnitudes of their allosteric activation of AMPK. Despite AMP's favorable values in three of these four properties, ADP is the dominant controller of AMPK activity dynamics in skeletal muscle during exercise by virtue of its higher concentration compared to that of AMP.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adenosina Difosfato , Ejercicio Físico/fisiología , Músculo Esquelético , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacocinética , Animales , Biología Computacional , Humanos , Ratones , Modelos Biológicos , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Transducción de Señal/fisiología
7.
Bioorg Chem ; 115: 105172, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34303898

RESUMEN

Two series of tetrahydrocarbazole derivatives have been designed and synthesized based on ZG02, a promising candidate developed in our previous studies. The newly prepared compounds were screened for glucose consumption activity in HepG2 cell lines. Aza-tetrahydrocarbazole compound 12b showed the most potent hypoglycemic activity with a 45% increase in glucose consumption when compared to the solvent control, which had approximately 1.2-fold higher activity than the positive control compounds (metformin and ZG02). An investigation of the potential mechanism indicated that 12b may exhibit hypoglycemic activity via activation of the AMPK pathway. Metabolic stability assays revealed that 12b showed good stability profiles in both artificial gastrointestinal fluids and blood plasma from SD rats. An oral glucose tolerance test (OGTT) was performed and the results further confirmed that 12b was a potent hypoglycemic agent.


Asunto(s)
Carbazoles/química , Diseño de Fármacos , Hipoglucemiantes/síntesis química , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Sitios de Unión , Carbazoles/farmacología , Carbazoles/uso terapéutico , Estabilidad de Medicamentos , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Semivida , Células Hep G2 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
8.
Can J Physiol Pharmacol ; 99(9): 935-942, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33596122

RESUMEN

α-Amyrin, a natural pentacyclic triterpene, has an antihyperglycemic effect in mice and dual PPARδ/γ action in 3T3-L1 adipocytes, and potential in the control of type 2 diabetes (T2D). About 80% of glucose uptake occurs in skeletal muscle cells, playing a significant role in insulin resistance (IR) and T2D. Peroxisome-proliferator activated receptors (PPARs), in particular PPARδ and PPARγ, are involved in the regulation of lipids and carbohydrates and, along with adenosine-monophosphate (AMP) - activated protein kinase (AMPK) and protein kinase B (Akt), are implicated in translocation of glucose transporter 4 (GLUT4); however, it is still unknown whether α-amyrin can affect these pathways in skeletal muscle cells. Our objective was to determine the action of α-amyrin in PPARδ, PPARγ, AMPK, and Akt in C2C12 myoblasts. The expression of PPARδ, PPARγ, fatty acid transporter protein (FATP), and GLUT4 was quantified using reverse transcription quantitative PCR and Western blot. α-Amyrin increased these markers along with phospho-AMPK (p-AMPK) but not p-Akt. Molecular docking showed that α-amyrin acts as an AMPK-allosteric activator, and may be related to GLUT4 translocation, as evidenced by confocal microscopy. These data support that α-amyrin could have an insulin-mimetic action in C2C12 myoblasts and should be considered as a bioactive molecule for new multitarget drugs with utility in T2D and other metabolic diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Transportador de Glucosa de Tipo 4/metabolismo , Mioblastos/efectos de los fármacos , PPAR delta/fisiología , PPAR gamma/fisiología , Triterpenos Pentacíclicos/farmacología , Proteínas Quinasas Activadas por AMP/química , Animales , Células Cultivadas , Proteínas de Transporte de Ácidos Grasos/fisiología , Ratones , Simulación del Acoplamiento Molecular , Mioblastos/metabolismo , Triterpenos Pentacíclicos/química , Transporte de Proteínas/efectos de los fármacos
9.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513781

RESUMEN

Physical exercise elicits physiological metabolic perturbations such as energetic and oxidative stress; however, a diverse range of cellular processes are stimulated in response to combat these challenges and maintain cellular energy homeostasis. AMP-activated protein kinase (AMPK) is a highly conserved enzyme that acts as a metabolic fuel sensor and is central to this adaptive response to exercise. The complexity of AMPK's role in modulating a range of cellular signalling cascades is well documented, yet aside from its well-characterised regulation by activation loop phosphorylation, AMPK is further subject to a multitude of additional regulatory stimuli. Therefore, in this review we comprehensively outline current knowledge around the post-translational modifications of AMPK, including novel phosphorylation sites, as well as underappreciated roles for ubiquitination, sumoylation, acetylation, methylation and oxidation. We provide insight into the physiological ramifications of these AMPK modifications, which not only affect its activity, but also subcellular localisation, nutrient interactions and protein stability. Lastly, we highlight the current knowledge gaps in this area of AMPK research and provide perspectives on how the field can apply greater rigour to the characterisation of novel AMPK regulatory modifications.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Procesamiento Proteico-Postraduccional , Proteínas Quinasas Activadas por AMP/genética , Acetilación , Animales , Homeostasis , Humanos , Metilación , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Dominios Proteicos , Transducción de Señal/genética , Ubiquitinación
10.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34681581

RESUMEN

As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Proteínas Quinasas Activadas por AMP/química , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Ritmo Circadiano , Citoplasma/metabolismo , Respuesta al Choque Térmico , Humanos , Carioferinas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1
11.
Molecules ; 26(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34770917

RESUMEN

The adenosine monophosphate activated protein kinase (AMPK) is critical in the regulation of important cellular functions such as lipid, glucose, and protein metabolism; mitochondrial biogenesis and autophagy; and cellular growth. In many diseases-such as metabolic syndrome, obesity, diabetes, and also cancer-activation of AMPK is beneficial. Therefore, there is growing interest in AMPK activators that act either by direct action on the enzyme itself or by indirect activation of upstream regulators. Many natural compounds have been described that activate AMPK indirectly. These compounds are usually contained in mixtures with a variety of structurally different other compounds, which in turn can also alter the activity of AMPK via one or more pathways. For these compounds, experiments are complicated, since the required pure substances are often not yet isolated and/or therefore not sufficiently available. Therefore, our goal was to develop a screening tool that could handle the profound heterogeneity in activation pathways of the AMPK. Since machine learning algorithms can model complex (unknown) relationships and patterns, some of these methods (random forest, support vector machines, stochastic gradient boosting, logistic regression, and deep neural network) were applied and validated using a database, comprising of 904 activating and 799 neutral or inhibiting compounds identified by extensive PubMed literature search and PubChem Bioassay database. All models showed unexpectedly high classification accuracy in training, but more importantly in predicting the unseen test data. These models are therefore suitable tools for rapid in silico screening of established substances or multicomponent mixtures and can be used to identify compounds of interest for further testing.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Modelos Teóricos , Relación Estructura-Actividad Cuantitativa , Proteínas Quinasas Activadas por AMP/metabolismo , Algoritmos , Aprendizaje Profundo , Activación Enzimática , Humanos , Aprendizaje Automático , Curva ROC , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Máquina de Vectores de Soporte
12.
J Biol Chem ; 294(3): 953-967, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30478170

RESUMEN

AMP-activated protein kinase (AMPK) is an attractive therapeutic target for managing metabolic diseases. A class of pharmacological activators, including Merck 991, binds the AMPK ADaM site, which forms the interaction surface between the kinase domain (KD) of the α-subunit and the carbohydrate-binding module (CBM) of the ß-subunit. Here, we report the development of two new 991-derivative compounds, R734 and R739, which potently activate AMPK in a variety of cell types, including ß2-specific skeletal muscle cells. Surprisingly, we found that they have only minor effects on direct kinase activity of the recombinant α1ß2γ1 isoform yet robustly enhance protection against activation loop dephosphorylation. This mode of activation is reminiscent of that of ADP, which activates AMPK by binding to the nucleotide-binding sites in the γ-subunit, more than 60 Å away from the ADaM site. To understand the mechanisms of full and partial AMPK activation, we determined the crystal structures of fully active phosphorylated AMPK α1ß1γ1 bound to AMP and R734/R739 as well as partially active nonphosphorylated AMPK bound to R734 and AMP and phosphorylated AMPK bound to R734 in the absence of added nucleotides at <3-Å resolution. These structures and associated analyses identified a novel conformational state of the AMPK autoinhibitory domain associated with partial kinase activity and provide new insights into phosphorylation-dependent activation loop stabilization in AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/química , Activadores de Enzimas/química , Proteínas Quinasas Activadas por AMP/metabolismo , Dominio Catalítico , Células Hep G2 , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
Biochem Biophys Res Commun ; 533(4): 758-763, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32993962

RESUMEN

AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by suppressing anabolic processes and activating catabolic processes. AMPK activators are an important therapeutic target for metabolic syndrome due to favorable physiological effects of AMPK activation on metabolism. Recent studies show that niclosamide, an FDA-approved anthelmintic drug that exerts an uncoupling effect on the mitochondria of the parasite, improves blood glucose levels and reduces hepatic steatosis in mice via AMPK activation. Niclosamide is thought to activate AMPK by increasing AMP/ATP ratio through mitochondrial uncoupling, but details of its action remain unclear. In this study, we found that niclosamide also activates the AMPK complex, which contains the AMP-insensitive γ subunit. Further, niclosamide shows greater AMPK activation for the AMPK complex containing ß2 subunit, but not the ß1 subunit. This effect was inhibited by substituting the Ser108 residue of the ß2 subunit to alanine. Niclosamide displays a novel AMPK activation mechanism independent of the increase in AMP/ATP ratio.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antihelmínticos/farmacología , Niclosamida/farmacología , Proteínas Quinasas Activadas por AMP/química , Adenosina Monofosfato/metabolismo , Animales , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Fosforilación/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Treonina/metabolismo
14.
Arch Biochem Biophys ; 687: 108285, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32074500

RESUMEN

Polyphyllin I (PPI), a bioactive constituent extracted from the rhizomes of Paris polyphylla, is cytotoxic to several cancer types. This study was designed to explore whether PPI prevents non-small-cell lung cancer (NSCLC) growth and to investigate the molecular mechanism. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. In cultured human NSCLC cell lines, PPI induces autophagy by activating AMPK and then inhibiting mTOR signaling in a concentration-dependent manner. Furthermore, the activation of autophagy induced by PPI was reversed by the AMPK inhibitor compound C. Computational docking showed that PPI directly interacted with the allosteric drug and metabolite site of AMPK to stabilize its activation. Microscale thermophoresis and Drug Affinity Responsive Targeting Stability (DARTS) assay further confirmed the high affinity between PPI and AMPK. In vivo studies indicated that PPI suppressed the growth of NSCLC and increased the levels of LC3-II and phosphorylated AMPK in tumors isolated from a xenograft model of NSCLC in mice. Moreover, PPI exhibited favorable pharmacokinetics in rats. In summary, PPI conclusively acts as a direct AMPK activator to induce cell autophagy which inhibits the growth of NSCLC cells. In the future, PPI therapy should be applied to treat patients with NSCLC.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Diosgenina/análogos & derivados , Activadores de Enzimas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/química , Sitio Alostérico , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Diosgenina/metabolismo , Diosgenina/farmacocinética , Diosgenina/uso terapéutico , Activadores de Enzimas/metabolismo , Activadores de Enzimas/farmacocinética , Femenino , Humanos , Masculino , Ratones Desnudos , Simulación del Acoplamiento Molecular , Unión Proteica , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Bioorg Med Chem Lett ; 30(2): 126790, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31744674

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) has been considered as a promising drug target for its regulation in both glucose and lipid metabolism. Mogrol was originally identified from high throughput screening as a small molecule activator of AMPK subtype α2ß1γ1. In order to enhance its potency on AMPK and summarize the structure-activity relationships, a series of mogrol derivatives were designed, synthesized and evaluated in pharmacological AMPK activation assays. The results showed that the amine derivatives at the 24-position can improve the potency. Among them, compounds 3 and 4 exhibited the best potency (EC50: 0.15 and 0.14 µM) which was 20 times more potent than mogrol (EC50: 3.0 µM).


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diseño de Fármacos , Activadores de Enzimas/síntesis química , Triterpenos/metabolismo , Proteínas Quinasas Activadas por AMP/química , Regulación Alostérica/efectos de los fármacos , Cucurbitaceae/química , Cucurbitaceae/metabolismo , Activadores de Enzimas/metabolismo , Activadores de Enzimas/farmacología , Humanos , Relación Estructura-Actividad , Triterpenos/farmacología
16.
Chem Pharm Bull (Tokyo) ; 68(1): 77-90, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31902903

RESUMEN

Novel 3,5-dimethylpyridin-4(1H)-one scaffold compounds were synthesized and evaluated as AMP-activated protein kinase (AMPK) activators. Unlike direct AMPK activators, this series of compounds showed selective cell growth inhibitory activity against human breast cancer cell lines. By optimizing the lead compound (4a) from our library, 2-[({1'-[(4-fluorophenyl)methyl]-2-methyl-1',2',3',6'-tetrahydro[3,4'-bipyridin]-6-yl}oxy)methyl]-3,5-dimethylpyridin-4(1H)-one (25) was found to have potent AMPK activating activity. Compound 25 also showed good aqueous solubility while maintaining the unique selectivity in cell growth inhibitory activity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Piridonas/química , Proteínas Quinasas Activadas por AMP/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Piridonas/síntesis química , Piridonas/farmacología , Solubilidad , Relación Estructura-Actividad
17.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375416

RESUMEN

AMP-activated protein kinase (AMPK) is a key regulator of cellular energy balance. In response to metabolic stress, it acts to redress energy imbalance through promotion of ATP-generating catabolic processes and inhibition of ATP-consuming processes, including cell growth and proliferation. While findings that AMPK was a downstream effector of the tumour suppressor LKB1 indicated that it might act to repress tumourigenesis, more recent evidence suggests that AMPK can either suppress or promote cancer, depending on the context. Prior to tumourigenesis AMPK may indeed restrain aberrant growth, but once a cancer has arisen, AMPK may instead support survival of the cancer cells by adjusting their rate of growth to match their energy supply, as well as promoting genome stability. The two isoforms of the AMPK catalytic subunit may have distinct functions in human cancers, with the AMPK-α1 gene often being amplified, while the AMPK-α2 gene is more often mutated. The prevalence of metabolic disorders, such as obesity and Type 2 diabetes, has led to the development of a wide range of AMPK-activating drugs. While these might be useful as preventative therapeutics in individuals predisposed to cancer, it seems more likely that AMPK inhibitors, whose development has lagged behind that of activators, would be efficacious for the treatment of pre-existing cancers.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/farmacología , Metabolismo Energético/fisiología , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Trifosfato/biosíntesis , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosforilación/efectos de los fármacos , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
18.
J Biol Chem ; 293(44): 16994-17007, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30206123

RESUMEN

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis and a promising drug target for managing metabolic diseases such as type 2 diabetes. Many pharmacological AMPK activators, and possibly unidentified physiological metabolites, bind to the allosteric drug and metabolite (ADaM) site at the interface between the kinase domain (KD) in the α-subunit and the carbohydrate-binding module (CBM) in the ß-subunit. Here, using double electron-electron resonance (DEER) spectroscopy, we demonstrate that the CBM-KD interaction is partially dissociated and the interface highly disordered in the absence of pharmacological ADaM site activators as inferred from a low depth of modulation and broad DEER distance distributions. ADaM site ligands such as 991, and to a lesser degree phosphorylation, stabilize the KD-CBM association and strikingly reduce conformational heterogeneity in the ADaM site. Our findings that the ADaM site, formed by the KD-CBM interaction, can be modulated by diverse ligands and by phosphorylation suggest that it may function as a hub for integrating regulatory signals.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Regulación Alostérica , Bencimidazoles/química , Bencimidazoles/metabolismo , Benzoatos/química , Benzoatos/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Ligandos , Conformación Proteica , Dominios Proteicos
19.
J Biol Chem ; 293(23): 8874-8885, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29695504

RESUMEN

Inhibition of the metabolic regulator AMP-activated protein kinase (AMPK) is increasingly being investigated for its therapeutic potential in diseases where AMPK hyperactivity results in poor prognoses, as in established cancers and neurodegeneration. However, AMPK-inhibitory tool compounds are largely limited to compound C, which has a poor selectivity profile. Here we identify the pyrimidine derivative SBI-0206965 as a direct AMPK inhibitor. SBI-0206965 inhibits AMPK with 40-fold greater potency and markedly lower kinase promiscuity than compound C and inhibits cellular AMPK signaling. Biochemical characterization reveals that SBI-0206965 is a mixed-type inhibitor. A co-crystal structure of the AMPK kinase domain/SBI-0206965 complex shows that the drug occupies a pocket that partially overlaps the ATP active site in a type IIb inhibitor manner. SBI-0206965 has utility as a tool compound for investigating physiological roles for AMPK and provides fresh impetus to small-molecule AMPK inhibitor therapeutic development.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Benzamidas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Benzamidas/química , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química
20.
Arch Biochem Biophys ; 672: 108061, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31356776

RESUMEN

Autophagy exerts a dual role in promoting cell death or survival. Recent studies have shown that it may play an important role in lipopolysaccharide (LPS)-induced acute lung injury (ALI). It was also suggested that angiotensin converting enzyme 2 (ACE2) may participate in the regulation of autophagy. The present study aims to investigate the role of autophagy in ALI and the involvement of ACE2. The regulation of the APMK/mTOR pathway was explored to clarify the underlying mechanism. The results showed that autophagy played an important role in ALI induced by LPS, as the autophagy inhibitor 3-methyladenine (3-MA) mitigated the severity of ALI. ACE2 activator resorcinolnaphthalein and inhibitor MLN-4760 significantly affected the histological appearance and wet/dry (W/D) ratio of the lung and altered the ACE2 activity of the lung, tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) levels in bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) levels in lung tissue. Furthermore, LPS, resorcinolnaphthalein and MLN-4760 significantly affected the expression of autophagy proteins Beclin-1, LC3-I and LC3-II. To explore the mechanism of ACE2 on lung autophagy, we measured the phosphorylation of AMPK/mTOR after mice were treated with LPS and resorcinolnaphthalein or MLN-4760. The results revealed that resorcinolnaphthalein and MLN-4760 both significantly altered the phosphorylation of AMPK/mTOR. Finally, we found that AMPK inhibitor (8-bAMP) and mTOR activator (propranolol) both abolished the effects of ACE2 activator (resorcinolnaphthalein) on the expression of lung autophagy proteins Beclin-1, LC3-I and LC3-II. In conclusion, these findings suggest that ACE2 could alleviate the severity of ALI, inflammation and autophagy in lung tissue through the AMPK/mTOR pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Lesión Pulmonar Aguda/fisiopatología , Autofagia/fisiología , Peptidil-Dipeptidasa A/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/química , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Enzima Convertidora de Angiotensina 2 , Animales , Pulmón/patología , Masculino , Ratones Endogámicos BALB C , Serina-Treonina Quinasas TOR/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA