RESUMEN
Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease. We show that in DBA, the pool of available ribosomes is limited, while ribosome composition remains constant. Surprisingly, this global reduction in ribosome levels more profoundly alters translation of a select subset of transcripts. We show how the reduced translation of select transcripts in HSPCs can impair erythroid lineage commitment, illuminating a regulatory role for ribosome levels in cellular differentiation.
Asunto(s)
Anemia de Diamond-Blackfan/patología , Ribosomas/metabolismo , Regiones no Traducidas 5' , Anemia de Diamond-Blackfan/genética , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas , Femenino , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Mutación Missense , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
MYC-driven B-cell lymphomas are addicted to increased levels of ribosome biogenesis (RiBi), offering the potential for therapeutic intervention. However, it is unclear whether inhibition of RiBi suppresses lymphomagenesis by decreasing translational capacity and/or by p53 activation mediated by the impaired RiBi checkpoint (IRBC). Here we generated Eµ-Myc lymphoma cells expressing inducible short hairpin RNAs to either ribosomal protein L7a (RPL7a) or RPL11, the latter an essential component of the IRBC. The loss of either protein reduced RiBi, protein synthesis, and cell proliferation to similar extents. However, only RPL7a depletion induced p53-mediated apoptosis through the selective proteasomal degradation of antiapoptotic MCL-1, indicating the critical role of the IRBC in this mechanism. Strikingly, low concentrations of the US Food and Drug Administration-approved anticancer RNA polymerase I inhibitor Actinomycin D (ActD) dramatically prolonged the survival of mice harboring Trp53+/+;Eµ-Myc but not Trp53-/-;Eµ-Myc lymphomas, which provides a rationale for treating MYC-driven B-cell lymphomas with ActD. Importantly, the molecular effects of ActD on Eµ-Myc cells were recapitulated in human B-cell lymphoma cell lines, highlighting the potential for ActD as a therapeutic avenue for p53 wild-type lymphoma.
Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Dactinomicina/farmacología , Linfoma de Células B , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc , Ribosomas , Proteína p53 Supresora de Tumor , Animales , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Masculino , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Noncoding RNAs, including small nucleolar RNAs (snoRNAs), play important roles in leukemogenesis, but the relevant mechanisms remain incompletely understood. We performed snoRNA-focused CRISPR-Cas9 knockout library screenings that targeted the entire snoRNAnome and corresponding host genes. The C/D box containing SNORD42A was identified as an essential modulator for acute myeloid leukemia (AML) cell survival and proliferation in multiple human leukemia cell lines. In line, SNORD42A was consistently expressed at higher levels in primary AML patient samples than in CD34+ progenitors, monocytes, and granulocytes. Functionally, knockout of SNORD42A reduced colony formation capability and inhibited proliferation. The SNORD42A acts as a C/D box snoRNA and directs 2'-O-methylation at uridine 116 of 18S ribosomal RNA (rRNA). Deletion of SNORD42A decreased 18S-U116 2'-O-methylation, which was associated with a specific decrease in the translation of ribosomal proteins. In line, the cell size of SNORD42A deletion carrying leukemia cells was decreased. Taken together, these findings establish that high-level expression of SNORD42A with concomitant U116 18S rRNA 2'-O-methylation is essential for leukemia cell growth and survival.
Asunto(s)
Proliferación Celular , Metilación de ADN , Leucemia Mieloide Aguda/patología , ARN Ribosómico 18S/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas Ribosómicas/metabolismo , Sistemas CRISPR-Cas , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , ARN Ribosómico 18S/química , ARN Nucleolar Pequeño/genética , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Células Tumorales CultivadasRESUMEN
The emerging pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused social and economic disruption worldwide, infecting over 9.0 million people and killing over 469â000 by 24 June 2020. Unfortunately, no vaccine or antiviral drug that completely eliminates the transmissible disease coronavirus disease 2019 (COVID-19) has been developed to date. Given that coronavirus nonstructural protein 1 (nsp1) is a good target for attenuated vaccines, it is of great significance to explore the detailed characteristics of SARS-CoV-2 nsp1. Here, we first confirmed that SARS-CoV-2 nsp1 had a conserved function similar to that of SARS-CoV nsp1 in inhibiting host-protein synthesis and showed greater inhibition efficiency, as revealed by ribopuromycylation and Renilla luciferase (Rluc) reporter assays. Specifically, bioinformatics and biochemical experiments showed that by interacting with 40S ribosomal subunit, the lysine located at amino acid 164 (K164) was the key residue that enabled SARS-CoV-2 nsp1 to suppress host gene expression. Furthermore, as an inhibitor of host-protein expression, SARS-CoV-2 nsp1 contributed to cell-cycle arrest in G0/G1 phase, which might provide a favourable environment for virus production. Taken together, this research uncovered the detailed mechanism by which SARS-CoV-2 nsp1 K164 inhibited host gene expression, laying the foundation for the development of attenuated vaccines based on nsp1 modification.
Asunto(s)
Interacciones Huésped-Patógeno/genética , Lisina/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Biología Computacional/métodos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación de la Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Lisina/metabolismo , Mutación , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas no Estructurales Virales/metabolismoRESUMEN
Recanalization therapy by intravenous thrombolysis or endovascular therapy is critical for the treatment of cerebral infarction. However, the recanalization treatment will also exacerbate acute brain injury and even severely threatens human life due to the reperfusion injury. So far, the underlying mechanisms for cerebral ischaemia-reperfusion injury are poorly understood and effective therapeutic interventions are yet to be discovered. Therefore, in the research, we subjected SK-N-BE(2) cells to oxygen-glucose deprivation/reperfusion (OGDR) insult and performed a pooled genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) knockout screen to discover new potential therapeutic targets for cerebral ischaemia-reperfusion injury. We used Metascape to identify candidate genes which might involve in OGDR resistance. We found that the genes contributed to OGDR resistance were primarily involved in neutrophil degranulation, mitochondrial translation, and regulation of cysteine-type endopeptidase activity involved in apoptotic process and response to oxidative stress. We then knocked down some of the identified candidate genes individually. We demonstrated that MRPL19, MRPL32, MRPL52 and MRPL51 inhibition increased cell viability and attenuated OGDR-induced apoptosis. We also demonstrated that OGDR down-regulated the expression of MRPL19 and MRPL51 protein. Taken together, our data suggest that genome-scale screening with Cas9 is a reliable tool to analyse the cellular systems that respond to OGDR injury. MRPL19 and MRPL51 contribute to OGDR resistance and are supposed to be promising targets for the treatment of cerebral ischaemia-reperfusion damage.
Asunto(s)
Sistemas CRISPR-Cas , Glucosa/deficiencia , Proteínas Mitocondriales/antagonistas & inhibidores , Neuroblastoma/patología , Oxígeno/metabolismo , Daño por Reperfusión/fisiopatología , Proteínas Ribosómicas/antagonistas & inhibidores , Regulación de la Expresión Génica , Humanos , Proteínas Mitocondriales/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estrés Oxidativo , Proteínas Ribosómicas/genética , Células Tumorales CultivadasRESUMEN
Endometriosis is a female disease which is defined as the presence of ectopic endometrial tissue and is dependent on estrogen for its survival in these ectopic locations. Expression of the ribosomal protein large P1 (RPLP1) is associated with cell proliferation and invasion in several pathologies, but a role in the pathophysiology of endometriosis has not been explored. In this study, we aimed to evaluate the expression and function of RPLP1 with respect to endometriosis pathophysiology. RPLP1 protein was localised by immunohistochemistry (IHC) in eutopic and ectopic tissue from 28 subjects with confirmed endometriosis and from 20 women without signs or symptoms of the disease, while transcript levels were evaluated by qRT-PCR in 77 endometriotic lesions and 55 matched eutopic endometrial biopsies, and protein expression was evaluated using western blotting in 20 of these matched samples. To evaluate the mechanism for enhanced lesion expression of RPLP1, an experimental murine model of endometriosis was used and RPLP1 expression was localized using IHC. In vitro studies using an endometriosis cell line coupled with shRNA knockdown was used to demonstrate its role in cell survival. Expression of RPLP1 mRNA and protein were significantly higher in ectopic lesion tissue compared to paired eutopic endometrium and immunohistochemical localisation revealed predominant localisation to epithelial cells. This pattern of lesion RPLP1 was recapitulated in mice with experimentally induced endometriosis. Stable knockdown of RPLP1 protein resulted in a significant decrease in cell survival in vitro. These studies reveal that RPLP1 is associated with cell proliferation and/or survival and may play a role in the pathophysiology of endometriosis.
Asunto(s)
Apoptosis/genética , Endometriosis/genética , Células Epiteliales/metabolismo , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Adulto , Animales , Estudios de Casos y Controles , Línea Celular , Proliferación Celular , Modelos Animales de Enfermedad , Endometriosis/metabolismo , Endometriosis/patología , Endometrio/metabolismo , Endometrio/patología , Células Epiteliales/patología , Femenino , Regulación de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo , Índice de Severidad de la Enfermedad , Transducción de SeñalRESUMEN
Combination of corticosteroids (CS) with cyclosporin A (CsA) is widely used in the treatment of autoimmune diseases, autoinflammatory diseases and transplantation rejection. However, some patients fail to respond or develop resistance to the combination regimen. In Vogt-Koyanagi-Harada (VKH) disease model, we performed RNA sequencing (RNA-seq) based transcriptomics, isobaric tags for relative and absolute quantification (iTRAQ) based proteomics and assays in vitro to screen and validate potential resistant molecules. We found that a total of 1697 differentially expressed genes (DEGs) and 21 differentially expressed proteins (DEPs) in CD4+ T cells between CsA & CS-resistant and -sensitive VKH patients. Ribosomal Protein S4, Y-Linked 1 (RPS4Y1) was verified to regulate the resistance of CD4+ T cells from male VKH patients to CsA & CS. Importantly, we showed that chlorambucil (CLB) could reverse the resistance by RPS4Y1 suppression. Taken together, we identify RPS4Y1 as an important CsA & CS resistance gene in VKH disease. Researchers should consider validating the resistant effect of RPS4Y1 in other autoimmune diseases or organ transplantation.
Asunto(s)
Ciclosporina/farmacología , Glucocorticoides/farmacología , Proteínas Ribosómicas/genética , Células TH1/inmunología , Síndrome Uveomeningoencefálico/tratamiento farmacológico , Adulto , Células Cultivadas , Clorambucilo/farmacología , Clorambucilo/uso terapéutico , Ciclosporina/uso terapéutico , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Quimioterapia Combinada , Glucocorticoides/uso terapéutico , Humanos , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , RNA-Seq , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo , Células TH1/efectos de los fármacos , Células TH1/metabolismo , Síndrome Uveomeningoencefálico/sangre , Síndrome Uveomeningoencefálico/genética , Síndrome Uveomeningoencefálico/inmunología , Adulto JovenRESUMEN
Arsenic pollution in drinking water is a widespread public health problem, and it affects approximately 200 million people in over 70 countries. Many human diseases, including neurodegenerative disorders, are engendered by the malfunction of proteins involved in important biological processes and are elicited by protein misfolding and/or loss of protein quality control during translation. Arsenic exposure results in proteotoxic stress, though the detailed molecular mechanisms remain poorly understood. Here, we showed that arsenite interacts with ZNF598 protein in cells and exposure of human skin fibroblasts to arsenite results in significant decreases in the ubiquitination levels of lysine residues 138 and 139 in RPS10 and lysine 8 in RPS20, which are regulatory post-translational modifications important in ribosome-associated protein quality control. Furthermore, the arsenite-elicited diminutions in ubiquitinations of RPS10 and RPS20 gave rise to augmented read-through of poly(adenosine)-containing stalling sequences, which was abolished in ZNF598 knockout cells. Together, our study revealed a novel mechanism underlying the arsenic-induced proteostatic stress in human cells.
Asunto(s)
Arsenitos/toxicidad , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Ribosómicas/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Proteínas Portadoras/metabolismo , Células Cultivadas , Humanos , Proteínas Ribosómicas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Ubiquitinación/efectos de los fármacosRESUMEN
Ribosomal protein S3 (RPS3) is a component of the 40S ribosomal subunit. It is known to function in ribosome biogenesis and as an endonuclease. RPS3 has been shown to be over expressed in colon adenocarcinoma but its role in colon cancer is still unknown. In this study, we aim at determining the expression levels of RPS3 in a colon cancer cell line Caco-2 compared to a normal colon mucosa cell line NCM-460 and study the effects of targeting this protein by siRNA on cellular behavior. RPS3 was found to be expressed in both cell lines. However, siRNA treatment showed a more protruding effect on Caco-2 cells compared to NCM-460 cells. RPS3 knockdown led to a significant decrease in the proliferation, survival, migration and invasion and an increase in the apoptosis of Caco-2 cells. Western blot analysis demonstrated that these effects correlated with an increase in the level of the tumor suppressor p53 and a decrease in the level and activity of lactate dehydrogenase (LDH), an enzyme involved in the metabolism of cancer cells. No significant effect was shown in normal colon NCM-460 cells. Targeting p53 by siRNA did not affect RPS3 levels indicating that p53 may be a downstream target of RPS3. However, the concurrent knockdown of RPS3 and p53 showed no change in LDH level in Caco-2 cells suggesting an interesting interplay among the three proteins. These findings might present RPS3 as a selective molecular marker in colon cancer and an attractive target for colon cancer therapy.
Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias del Colon/metabolismo , L-Lactato Deshidrogenasa/biosíntesis , Proteínas de Neoplasias/fisiología , Proteínas Ribosómicas/fisiología , Proteína p53 Supresora de Tumor/biosíntesis , Adenocarcinoma/genética , Apoptosis , Línea Celular Tumoral , Colon/metabolismo , Neoplasias del Colon/genética , Técnicas de Silenciamiento del Gen , Humanos , Mucosa Intestinal/metabolismo , L-Lactato Deshidrogenasa/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Amyloid precursor protein (APP) is processed along both the nonamyloidogenic pathway preventing amyloid beta peptide (Aß) production and the amyloidogenic pathway, generating Aß, whose accumulation characterizes Alzheimer's disease. Items of evidence report that the intracellular trafficking plays a key role in the generation of Aß and that the 37/67 kDa LR (laminin receptor), acting as a receptor for Aß, may mediate Aß-pathogenicity. Moreover, findings indicating interaction between the receptor and the key enzymes involved in the amyloidogenic pathway suggest a strong link between 37/67 kDa LR and APP processing. We show herein that the specific 37/67 kDa LR inhibitor, NSC48478, is able to reversibly affect the maturation of APP in a pH-dependent manner, resulting in the partial accumulation of the immature APP isoforms (unglycosylated/acetylated forms) in the endoplasmic reticulum (ER) and in transferrin-positive recycling endosomes, indicating alteration of the APP intracellular trafficking. These effects reveal NSC48478 inhibitor as a novel small molecule to be tested in disease conditions, mediated by the 37/67 kDa LR and accompanied by inactivation of ERK1/2 (extracellular signal-regulated kinases) signalling and activation of Akt (serine/threonine protein kinase) with consequent inhibition of GSK3ß.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Naftoles/farmacología , Neuronas/metabolismo , Receptores de Laminina/antagonistas & inhibidores , Proteínas Ribosómicas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Endosomas/efectos de los fármacos , Glicosilación , Aparato de Golgi/efectos de los fármacos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Laminina , Ratones , Microscopía Fluorescente , Proteínas Priónicas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Transducción de SeñalRESUMEN
Ribosomal protein S1 (RpsA) has been identified as a novel target of pyrazinoic acid (POA), which is the active form of pyrazinamide (PZA), in vivo. RpsA plays a crucial role in trans-translation, which is widespread in microbes. In our investigation, we first described the discovery of promising RpsA antagonists for drug-resistant mycobacterium (MtRpsAd438A) and M. smegmatis, as well as wild-type M. tuberculosis. These antagonists were discovered via structure/ligand-based virtual screening approaches. A total of 21 targeted compounds were selected by virtual screening, combined scores, affinity, similarities and rules for potential as drugs. Next, the affinities of these compounds for three targeted proteins were tested in vitro by applying various technologies, including fluorescence quenching titration (FQT), saturation transfer difference (STD), and chemical shift perturbation (CSP) assays. The results showed that seven compounds had a high affinity for the targeted proteins. Our discovery set the stage for discovering new chemical entities (NCEs) for PZA-resistant tuberculosis and providing key residues for rational drug design to target RpsA.
Asunto(s)
Antituberculosos/farmacología , Azoles/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Compuestos Heterocíclicos con 2 Anillos/farmacología , Proteínas Ribosómicas/antagonistas & inhibidores , Antituberculosos/química , Azoles/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Evaluación Preclínica de Medicamentos , Compuestos Heterocíclicos con 2 Anillos/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Programas InformáticosRESUMEN
DESI2 is a novel pro-apoptotic gene. We previously reported that DESI2 overexpression induces S phase arrest and apoptosis by activating checkpoint kinases. This work was to test whether the combination of endostatin, an endogenous antiangiogenic inhibitor, with DESI2 could improve the therapy efficacy in vitro and in vivo. The recombinant plasmid co-expressing DESI2 and endostatin was encapsulated with DOTAP/Cholesterol cationic liposome. Mice bearing CT26 colon carcinoma and LL2 lung cancer were treated with the DNA-liposome complex. We found that, in vitro, the combination of DESI2 and endostatin more efficiently inhibited proliferation of CT26, LL2, HCT116 and A549 cancer cells via apoptosis, as assessed by MTT assay, colony-formation assays, flow cytometric analysis, hoechst staining and activation of caspase-3, respectively. In addition, DESI2 overexpression caused up-regulation of RPS7, a substrate of DESI2 deubiquitination. Furthermore, siRNA targeting RPS7 partially abrogated, whereas RPS7 overexpression enhanced DESI2-induced inhibition of cell proliferation. Importantly, the combination also caused DNA lesions accumulation, which further promotes apoptosis. Mechanistic rationale suggested that endostatin first inhibits DNA-PKcs kinase, and partly abrogated DESI2-induced phosphorylation of DNA-PKcs, leading to increase of DNA damage, then contributes to DESI2-induced apoptosis. In vivo, the combined gene therapy more significantly inhibited tumor growth and efficiently prolonged the survival of tumor bearing mice than mono therapy. The improved antitumor effect was associated with inhibition of cell proliferation via apoptosis, as analyzed by TUNEL assay and PCNA immunostaining. The combination also inhibited angiogenesis, as assessed by alginate-encapsulated tumor cell assay and CD31 staining. Our data suggest that the combined gene therapy of DESI2 and endostatin can significantly enhance the antitumor activity as a DNA lesions accumulator, apoptosis inducer and angiogenesis inhibitor. The present study may provide a novel method for the treatment of cancer.
Asunto(s)
Liasas de Carbono-Nitrógeno/genética , Neoplasias del Colon/genética , Endostatinas/genética , Regulación Neoplásica de la Expresión Génica , Terapia Genética/métodos , Neoplasias Pulmonares/genética , Plásmidos/metabolismo , Células A549 , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/metabolismo , Animales , Apoptosis/genética , Liasas de Carbono-Nitrógeno/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Proliferación Celular , Colesterol/química , Colesterol/metabolismo , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Fragmentación del ADN , Endostatinas/metabolismo , Ácidos Grasos Monoinsaturados/química , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Células HCT116 , Humanos , Liposomas/administración & dosificación , Liposomas/química , Liposomas/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Ratones , Ratones Endogámicos C57BL , Plásmidos/administración & dosificación , Plásmidos/química , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection.
Asunto(s)
Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas Ribosómicas/metabolismo , Linfocitos B/metabolismo , Linfocitos B/virología , Línea Celular , ADN Viral/genética , ADN Viral/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Técnicas de Silenciamiento del Gen , Genoma Viral , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Origen de Réplica , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Activación Transcripcional , NucleolinaRESUMEN
Juvenile hormone (JH) controls many biological activities in insects, including development, metamorphosis, and reproduction. In the Aedes aegypti mosquito, a vector of dengue, yellow fever, chikungunya, and zika viruses, the metabolic tissue (the fat body, which is an analogue of the vertebrate liver) produces yolk proteins for developing oocytes. JH is important for the fat body to acquire competence for yolk protein production. However, the molecular mechanisms of how JH promotes mosquito reproduction are not completely understood. In this study we show that stimulation of the JH receptor methoprene-tolerant (Met) activates expression of genes encoding the regulator of ribosome synthesis 1 (RRS1) and six ribosomal proteins (two ribosomal large subunit proteins, two ribosomal small subunit proteins, and two mitochondrial ribosomal proteins). Moreover, RNAi-mediated depletion of RRS1 decreased biosynthesis of the ribosomal protein L32 (RpL32). Depletion of Met, RRS1, or RpL32 led to retardation of ovarian growth and reduced mosquito fecundity, which may at least in part have resulted from decreased vitellogenin protein production in the fat body. In summary, our results indicate that JH is critical for inducing the expression of ribosomal protein genes and demonstrate that RRS1 mediates the JH signal to enhance both ribosomal biogenesis and vitellogenesis.
Asunto(s)
Aedes/metabolismo , Proteínas de Insectos/agonistas , Hormonas Juveniles/metabolismo , Biogénesis de Organelos , Proteínas Ribosómicas/agonistas , Ribosomas/metabolismo , Vitelogénesis , Aedes/crecimiento & desarrollo , Animales , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas , Proteínas Mitocondriales/agonistas , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Técnicas de Cultivo de Órganos , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Polirribosomas/metabolismo , Interferencia de ARN , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transducción de Señal , Vitelogeninas/antagonistas & inhibidores , Vitelogeninas/genética , Vitelogeninas/metabolismoRESUMEN
The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.
Asunto(s)
Antibacterianos/farmacología , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Ribosómicas/antagonistas & inhibidores , Ribosomas/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Guanosina Trifosfato/metabolismo , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacosRESUMEN
Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.
Asunto(s)
Hepacivirus/genética , Hepacivirus/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Sistemas CRISPR-Cas , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Inactivación de Genes , Células HeLa , Hepacivirus/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Cinética , Datos de Secuencia Molecular , O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismoRESUMEN
Pseudomonas aeruginosa is a highly virulent, multidrug-resistant pathogen that causes significant morbidity and mortality in hospitalized patients and is particularly devastating in patients with cystic fibrosis. Increasing antibiotic resistance coupled with decreasing numbers of antibiotics in the developmental pipeline demands novel antibacterial approaches. Here, we tested peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), which inhibit translation of complementary mRNA from specific, essential genes in P. aeruginosa PPMOs targeted to acpP, lpxC, and rpsJ, inhibited P. aeruginosa growth in many clinical strains and activity of PPMOs could be enhanced 2- to 8-fold by the addition of polymyxin B nonapeptide at subinhibitory concentrations. The PPMO targeting acpP was also effective at preventing P. aeruginosa PAO1 biofilm formation and at reducing existing biofilms. Importantly, treatment with various combinations of a PPMO and a traditional antibiotic demonstrated synergistic growth inhibition, the most effective of which was the PPMO targeting rpsJ with tobramycin. Furthermore, treatment of P. aeruginosa PA103-infected mice with PPMOs targeting acpP, lpxC, or rpsJ significantly reduced the bacterial burden in the lungs at 24 h by almost 3 logs. Altogether, this study demonstrates that PPMOs targeting the essential genes acpP, lpxC, or rpsJ in P. aeruginosa are highly effective at inhibiting growth in vitro and in vivo These data suggest that PPMOs alone or in combination with antibiotics represent a novel approach to addressing the problems associated with rapidly increasing antibiotic resistance in P. aeruginosa.
Asunto(s)
Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica , Morfolinos/farmacología , Oligonucleótidos Antisentido/farmacología , Péptidos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Antibacterianos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Terapia Molecular Dirigida , Morfolinos/química , Oligonucleótidos Antisentido/química , Péptidos/química , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismoRESUMEN
Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is an oncoviral protein that plays a pivotal role in EBV-induced oncogenic transformation. The function of LMP1 in EBV-induced oncogenesis has been well studied. However, the molecular mechanisms underlying LMP1 protein stability remain poorly understood. In this study, we found that ribosomal protein s27a (RPS27a) regulates LMP1 stability by a tandem affinity purification analysis. RPS27a interacts directly with LMP1 in vitro and in vivo. Furthermore, overexpression of RPS27a increases the half-life of LMP1 in 293T cells, whereas downregulation of RPS27a using lentiviral shRNA technology accelerates the decrease in LMP1 protein level in EBV-transformed B cells. We show that LMP1 ubiquitination via the proteasome is completely inhibited by overexpression of RPS27a. RPS27a also enhances LMP1-mediated proliferation and invasion, suggesting that RPS27a interacts with LMP1 and stabilizes it by suppressing proteasome-mediated ubiquitination. These results suggest that RSP27a could be a potential target in EBV-infected LMP1-positive cancer cells.
Asunto(s)
Transformación Celular Neoplásica/genética , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno , Proteínas Ribosómicas/genética , Ubiquitinas/genética , Proteínas de la Matriz Viral/genética , Animales , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Perros , Regulación de la Expresión Génica , Células HEK293 , Semivida , Herpesvirus Humano 4/crecimiento & desarrollo , Herpesvirus Humano 4/metabolismo , Humanos , Células de Riñón Canino Madin Darby , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estabilidad Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo , Transducción de Señal , Ubiquitinación , Ubiquitinas/antagonistas & inhibidores , Ubiquitinas/metabolismo , Proteínas de la Matriz Viral/metabolismoRESUMEN
Formation of highly possessive antitermination complexes is crucial for the efficient transcription of stable RNA in all bacteria. A key step in the formation of these complexes is the protein-protein interaction (PPI) between N-utilisation substances (Nus) B and E and thus this PPI offers a novel target for a new antibiotic class. A pharmacophore developed via a secondary structure epitope approach was utilised to perform an in silico screen of the mini-Maybridge library (56,000 compounds) which identified 25 hits of which five compounds were synthetically tractable leads. Here we report the synthesis of these five leads and their biological evaluation as potential inhibitors of the NusB-NusE PPI. Two chemically diverse scaffolds were identified to be low micro molar potent PPI inhibitors, with compound (4,6-bis(2',4',3.4 tetramethoxyphenyl))pyrimidine-2-sulphonamido-N-4-acetamide 1 and N,N'-[1,4-butanediylbis(oxy-4,1-phenylene)]bis(N-ethyl)urea 3 exhibiting IC50 values of 6.1µM and 19.8µM, respectively. These inhibitors were also shown to be moderate inhibitors of Gram-positive Bacillus subtilis and Gram-negative Escherichia coli growth.
Asunto(s)
Antibacterianos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas Ribosómicas/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Antibacterianos/síntesis química , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/química , Enlace de Hidrógeno , Oligopéptidos/química , Oligopéptidos/farmacología , Éteres Fenílicos/síntesis química , Éteres Fenílicos/farmacología , Unión Proteica , Pirimidinas/síntesis química , Pirimidinas/farmacología , Proteínas Ribosómicas/química , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Factores de Transcripción/químicaRESUMEN
The ability of the ribosome to assist in folding of proteins both in vitro and in vivo is well documented and is a nontranslational function of the ribosome. The interaction of the unfolded protein with the peptidyl transferase centre (PTC) of the bacterial large ribosomal subunit is followed by release of the protein in the folding competent state and rapid dissociation of ribosomal subunits. Our study demonstrates that the PTC-specific antibiotics, chloramphenicol and blasticidin S inhibit unfolded protein-mediated subunit dissociation. During post-termination stage of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. Ribosome dissociation mediated by RRF and induced at low magnesium concentration was also inhibited by the antibiotics indicating that the PTC antibiotics exert an associative effect on ribosomal subunits. In vivo, the antibiotics can also reduce the ribosomal degradation during carbon starvation, a process requiring ribosome subunit dissociation. This study reveals a new mode of action of the broad-spectrum antibiotics chloramphenicol and blasticidin. SIGNIFICANCE AND IMPACT OF THE STUDY: Ribosome synthesizes protein in all organisms and is the target for multiple antimicrobial agents. Our study demonstrates that chloramphenicol and blasticidin S that target the peptidyl transferase centre of the bacterial ribosome can then inhibit dissociation of 70S ribosome mediated by (i) unfolded protein, (ii) translation factors or (iii) low Mg+2 concentrations in vitro and thereby suppresses ribosomal degradation during carbon starvation in vivo. The demonstration of this new mode of action furthers the understanding of these broad-spectrum antibiotics that differentially inhibit protein synthesis in prokaryotic and eukaryotic cells.