RESUMEN
Although rhodopsin is essential for sensing light for vision, it also mediates light-induced apoptosis of photoreceptors in mouse. RPE65, which catalyzes isomerization of all-trans retinyl fatty acid esters to 11-cis-retinol (11cROL) in the visual cycle, controls the rhodopsin regeneration rate and photoreceptor susceptibility to light-induced degeneration. Mutations in RPE65 have been linked to blindness in affected children. Despite such importance, the mechanism that regulates RPE65 function remains unclear. Through unbiased expression screening of a bovine retinal pigment epithelium (RPE) cDNA library, we have identified elongation of very long-chain fatty acids-like 1 (ELOVL1) and fatty acid transport protein 4 (FATP4), which each have very long-chain fatty acid acyl-CoA synthetase (VLCFA-ACS) activity, as negative regulators of RPE65. We found that the VLCFA derivative lignoceroyl (C24:0)-CoA inhibited synthesis of 11cROL, whereas palmitoyl (C16:0)-CoA promoted synthesis of 11cROL. We further found that competition of FATP4 with RPE65 for the substrate of RPE65 was also involved in the mechanisms by which FATP4 inhibits synthesis of 11cROL. FATP4 was predominantly expressed in RPE, and the FATP4-deficient RPE showed significantly higher isomerase activity. Consistent with these results, the regeneration rate of 11-cis-retinaldehyde and the recovery rate for rod light sensitivity were faster in FATP4-deficient mice than wild-type mice. Moreover, FATP4-deficient mice displayed increased accumulation of the cytotoxic all-trans retinaldehyde and hypersusceptibility to light-induced photoreceptor degeneration. Our findings demonstrate that ELOVL1, FATP4, and their products comprise the regulatory elements of RPE65 and play important roles in protecting photoreceptors from degeneration induced by light damage.
Asunto(s)
Proteínas de Transporte de Ácidos Grasos/farmacología , Luz , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Degeneración Retiniana/prevención & control , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , cis-trans-Isomerasas/antagonistas & inhibidores , Acetiltransferasas/farmacología , Oxidorreductasas de Alcohol/metabolismo , Animales , Western Blotting , Células Cultivadas , Electrorretinografía , Elongasas de Ácidos Grasos , Proteínas de Transporte de Ácidos Grasos/genética , Regulación de la Expresión Génica/fisiología , Biblioteca de Genes , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Extensión de la Cadena Peptídica de Translación , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Retinoides/metabolismo , Transfección , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/metabolismoRESUMEN
A mycobacterial codon-optimized gene encoding the Sm14 antigen of Schistosoma mansoni was generated using oligonucleotide assembly. This synthetic gene enhanced approximately fourfold the protein expression level in recombinant Mycobacterium bovis Bacille Calmette-Guérin (rBCG) when compared to that obtained using the native gene in the same expression vector. Immunization of mice with rBCG expressing Sm14 via the synthetic gene induced specific cellular Th1-predominant immune responses, as determined by interferon-gamma production of Sm14-stimulated splenocytes, which were comparable to those recorded in animals immunized with an rBCG strain expressing the native gene. Administration of a single dose of the rBCG-Sm14 construct carrying the synthetic gene conferred protection against cercarial challenge in outbred Swiss mice, at a level equivalent to those provided by either a single dose of rBCG expressing the native gene or three doses of Escherichia coli-derived recombinant Sm14. Our data demonstrated that despite improving the level of antigen expression, the codon optimization strategy did not result in enhanced immunity or protection against cercarial S. mansoni challenge.