Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.392
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 621(7978): 330-335, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587345

RESUMEN

Projected responses of ocean net primary productivity to climate change are highly uncertain1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role1-3, but this is poorly constrained by observations4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.


Asunto(s)
Modelos Climáticos , El Niño Oscilación del Sur , Hierro , Clorofila/metabolismo , Cambio Climático , Fluorescencia , Hierro/metabolismo , Nutrientes/metabolismo , Océano Pacífico , Fitoplancton/metabolismo , Proteómica , Radiometría , Imágenes Satelitales
2.
Clin Endocrinol (Oxf) ; 100(6): 585-592, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38567706

RESUMEN

BACKGROUND: The optimal treatment strategy for radioiodine (RAI) treatment protocols for benign hyperthyroidism remains elusive. Although individualised activities are recommended in European Law, many centres continue to provide fixed activities. Our institution implemented a dosimetry protocol in 2016 following years of fixed dosing which facilitates the calculation of individualised activities based on thyroid volume and radioiodine uptake. METHODS: This was a retrospective study comparing success rates using a dosimetry protocol targeting an absorbed dose of 150 Gy for Graves' disease (GD) and 125 Gy for Toxic Multinodular Goiter (TMNG) with fixed dosing (200MBq for GD and 400MBq for TMNG) among 204 patients with hyperthyroidism. Success was defined as a non-hyperthyroid state at 1 year for both disease states. Results were analysed for disease specific or patient specific modulators of response. RESULTS: This study included 204 patients; 74% (n = 151) received fixed activities and 26% (n = 53) of activities administered were calculated using dosimetry. A dosimetry-based protocol was successful in 80.5% of patients with GD and 100% of patients with TMNG. Differences in success rates and median activity administered between the fixed (204Mbq) and dosimetry (246MBq) cohort were not statistically significant (p = .64) however 44% of patients with GD and 70% of patients with TMNG received lower activities following treatment with dosimetry as opposed to fixed activities. Use of dosimetry resulted in successful treatment and reduced RAI exposure for 36% of patients with GD, 70% of patients with TMNG, and 44% of patients overall. CONCLUSION: This retrospective clinical study demonstrated that treatment with a dosimetry-based protocol for TMNG and GD achieved comparable success rates to fixed protocols while reducing RAI exposure for over a third of patients with GD and most patients with TMNG. This study also highlighted that RAI can successfully treat hyperthyroidism for some patients with activities lower than commonplace in clinical practise. No patient or disease specific modulators of treatment response were established in this study; however, the data supports a future prospective trial which further scrutinises the individual patient factors governing treatment response to RAI.


Asunto(s)
Enfermedad de Graves , Hipertiroidismo , Radioisótopos de Yodo , Radiometría , Humanos , Estudios Retrospectivos , Femenino , Hipertiroidismo/radioterapia , Masculino , Persona de Mediana Edad , Radioisótopos de Yodo/uso terapéutico , Radioisótopos de Yodo/administración & dosificación , Adulto , Enfermedad de Graves/radioterapia , Anciano , Resultado del Tratamiento , Radiación Ionizante , Bocio Nodular/radioterapia
3.
Strahlenther Onkol ; 200(7): 624-632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38315236

RESUMEN

BACKGROUND: Radiotherapy is one of the main treatment options for patients with esophageal cancer; however, it has been linked with an increased risk of cardiac toxicities. In the current study, we evaluated the effect of planning the radiation in deep-inspiration breath hold (DIBH) on the dose sparing of cardiac substructures and lung. MATERIALS AND METHODS: In this study, we analyzed 30 radiation therapy plans from 15 patients diagnosed with esophageal cancer planned for neoadjuvant radiotherapy. Radiation plans were generated for 41.4 Gy and delivered in 1.8 Gy per fraction for free-breathing (FB) and DIBH techniques. We then conducted a comparative dosimetric analysis, evaluating target volume coverage, the impact on cardiac substructures, and lung doses across the two planning techniques for each patient. RESULTS: There was no significant disparity in target volume dose coverage between DIBH and FB plans. However, the Dmean, D2%, and V30% of the heart experienced substantial reductions in DIBH relative to FB, with values of 6.21 versus 7.02 Gy (p = 0.011), 35.28 versus 35.84 Gy (p = 0.047), and 5% versus 5.8% (p = 0.048), respectively. The Dmean of the left ventricle was notably lower in DIBH compared to FB (4.27 vs. 5.12 Gy, p = 0.0018), accompanied by significant improvements in V10. Additionally, the Dmean and D2% of the left coronary artery, as well as the D2% of the right coronary artery, were significantly lower in DIBH. The dosimetric impact of DIBH on cardiac substructures proved more advantageous for middle esophageal (ME) than distal esophageal (DE) tumors. CONCLUSION: Radiotherapy in DIBH could provide a method to reduce the radiation dose to the left ventricle and coronaries, which could reduce the cardiac toxicity of the modality.


Asunto(s)
Contencion de la Respiración , Neoplasias Esofágicas , Corazón , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Neoplasias Esofágicas/radioterapia , Masculino , Femenino , Corazón/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Anciano , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/etiología , Terapia Neoadyuvante , Radiometría
4.
Eur J Nucl Med Mol Imaging ; 51(7): 1869-1875, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38407598

RESUMEN

PURPOSE: Long axial field-of-view (LAFOV) positron emission tomography (PET) systems allow to image all major organs with one bed position, which is particularly useful for acquiring whole-body dynamic data using short-lived radioisotopes like 82Rb. METHODS: We determined the absorbed dose in target organs of three subjects (29, 40, and 57 years old) using two different methods, i.e., MIRD and voxel dosimetry. The subjects were injected with 407.0 to 419.61 MBq of [82Rb]Cl and were scanned dynamically for 7 min with a LAFOV PET/CT scanner. RESULTS: Using the MIRD formalism and voxel dosimetry, the absorbed dose ranged from 1.84 to 2.78 µGy/MBq (1.57 to 3.92 µGy/MBq for voxel dosimetry) for the heart wall, 2.76 to 5.73 µGy/MBq (3.22 to 5.37 µGy/MBq for voxel dosimetry) for the kidneys, and 0.94 to 1.88 µGy/MBq (0.98 to 1.92 µGy/MBq for voxel dosimetry) for the lungs. The total body effective dose lied between 0.50 and 0.76 µSv/MBq. CONCLUSION: Our study suggests that the radiation dose associated with [82Rb]Cl PET/CT can be assessed by means of dynamic LAFOV PET and that it is lower compared to literature values.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiometría , Radioisótopos de Rubidio , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Persona de Mediana Edad , Adulto , Radiometría/métodos , Masculino , Dosis de Radiación , Femenino
5.
Eur J Nucl Med Mol Imaging ; 51(5): 1268-1286, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366197

RESUMEN

The numbers of diagnostic and therapeutic nuclear medicine agents under investigation are rapidly increasing. Both novel emitters and novel carrier molecules require careful selection of measurement procedures. This document provides guidance relevant to dosimetry for first-in human and early phase clinical trials of such novel agents. The guideline includes a short introduction to different emitters and carrier molecules, followed by recommendations on the methods for activity measurement, pharmacokinetic analyses, as well as absorbed dose calculations and uncertainty analyses. The optimal use of preclinical information and studies involving diagnostic analogues is discussed. Good practice reporting is emphasised, and relevant dosimetry parameters and method descriptions to be included are listed. Three examples of first-in-human dosimetry studies, both for diagnostic tracers and radionuclide therapies, are given.


Asunto(s)
Medicina Nuclear , Radiofármacos , Humanos , Medicina Nuclear/métodos , Radiometría/métodos , Cintigrafía , Radiofármacos/uso terapéutico , Guías de Práctica Clínica como Asunto , Ensayos Clínicos como Asunto
6.
Eur J Nucl Med Mol Imaging ; 51(6): 1516-1529, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267686

RESUMEN

PURPOSE: Accurate dosimetry is critical for ensuring the safety and efficacy of radiopharmaceutical therapies. In current clinical dosimetry practice, MIRD formalisms are widely employed. However, with the rapid advancement of deep learning (DL) algorithms, there has been an increasing interest in leveraging the calculation speed and automation capabilities for different tasks. We aimed to develop a hybrid transformer-based deep learning (DL) model that incorporates a multiple voxel S-value (MSV) approach for voxel-level dosimetry in [177Lu]Lu-DOTATATE therapy. The goal was to enhance the performance of the model to achieve accuracy levels closely aligned with Monte Carlo (MC) simulations, considered as the standard of reference. We extended our analysis to include MIRD formalisms (SSV and MSV), thereby conducting a comprehensive dosimetry study. METHODS: We used a dataset consisting of 22 patients undergoing up to 4 cycles of [177Lu]Lu-DOTATATE therapy. MC simulations were used to generate reference absorbed dose maps. In addition, MIRD formalism approaches, namely, single S-value (SSV) and MSV techniques, were performed. A UNEt TRansformer (UNETR) DL architecture was trained using five-fold cross-validation to generate MC-based dose maps. Co-registered CT images were fed into the network as input, whereas the difference between MC and MSV (MC-MSV) was set as output. DL results are then integrated to MSV to revive the MC dose maps. Finally, the dose maps generated by MSV, SSV, and DL were quantitatively compared to the MC reference at both voxel level and organ level (organs at risk and lesions). RESULTS: The DL approach showed slightly better performance (voxel relative absolute error (RAE) = 5.28 ± 1.32) compared to MSV (voxel RAE = 5.54 ± 1.4) and outperformed SSV (voxel RAE = 7.8 ± 3.02). Gamma analysis pass rates were 99.0 ± 1.2%, 98.8 ± 1.3%, and 98.7 ± 1.52% for DL, MSV, and SSV approaches, respectively. The computational time for MC was the highest (~2 days for a single-bed SPECT study) compared to MSV, SSV, and DL, whereas the DL-based approach outperformed the other approaches in terms of time efficiency (3 s for a single-bed SPECT). Organ-wise analysis showed absolute percent errors of 1.44 ± 3.05%, 1.18 ± 2.65%, and 1.15 ± 2.5% for SSV, MSV, and DL approaches, respectively, in lesion-absorbed doses. CONCLUSION: A hybrid transformer-based deep learning model was developed for fast and accurate dose map generation, outperforming the MIRD approaches, specifically in heterogenous regions. The model achieved accuracy close to MC gold standard and has potential for clinical implementation for use on large-scale datasets.


Asunto(s)
Octreótido , Octreótido/análogos & derivados , Compuestos Organometálicos , Radiometría , Radiofármacos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Humanos , Octreótido/uso terapéutico , Compuestos Organometálicos/uso terapéutico , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Radiometría/métodos , Radiofármacos/uso terapéutico , Medicina de Precisión/métodos , Aprendizaje Profundo , Masculino , Femenino , Método de Montecarlo , Procesamiento de Imagen Asistido por Computador/métodos , Tumores Neuroendocrinos/radioterapia , Tumores Neuroendocrinos/diagnóstico por imagen
7.
Eur J Nucl Med Mol Imaging ; 51(6): 1506-1515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155237

RESUMEN

PURPOSE: Transarterial radioembolization (TARE) procedures treat liver tumors by injecting radioactive microspheres into the hepatic artery. Currently, there is a critical need to optimize TARE towards a personalized dosimetry approach. To this aim, we present a novel microsphere dosimetry (MIDOS) stochastic model to estimate the activity delivered to the tumor(s), normal liver, and lung. METHODS: MIDOS incorporates adult male/female liver computational phantoms with the hepatic arterial, hepatic portal venous, and hepatic venous vascular trees. Tumors can be placed in both models at user discretion. The perfusion of microspheres follows cluster patterns, and a Markov chain approach was applied to microsphere navigation, with the terminal location of microspheres determined to be in either normal hepatic parenchyma, hepatic tumor, or lung. A tumor uptake model was implemented to determine if microspheres get lodged in the tumor, and a probability was included in determining the shunt of microspheres to the lung. A sensitivity analysis of the model parameters was performed, and radiation segmentectomy/lobectomy procedures were simulated over a wide range of activity perfused. Then, the impact of using different microspheres, i.e., SIR-Sphere®, TheraSphere®, and QuiremSphere®, on the tumor-to-normal ratio (TNR), lung shunt fraction (LSF), and mean absorbed dose was analyzed. RESULTS: Highly vascularized tumors translated into increased TNR. Treatment results (TNR and LSF) were significantly more variable for microspheres with high particle load. In our scenarios with 1.5 GBq perfusion, TNR was maximum for TheraSphere® at calibration time in segmentectomy/lobar technique, for SIR-Sphere® at 1-3 days post-calibration, and regarding QuiremSphere® at 3 days post-calibration. CONCLUSION: This novel approach is a decisive step towards developing a personalized dosimetry framework for TARE. MIDOS assists in making clinical decisions in TARE treatment planning by assessing various delivery parameters and simulating different tumor uptakes. MIDOS offers evaluation of treatment outcomes, such as TNR and LSF, and quantitative scenario-specific decisions.


Asunto(s)
Neoplasias Hepáticas , Microesferas , Radiometría , Planificación de la Radioterapia Asistida por Computador , Procesos Estocásticos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/diagnóstico por imagen , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Masculino , Femenino , Modelos Biológicos , Embolización Terapéutica/métodos
8.
Eur J Nucl Med Mol Imaging ; 51(8): 2428-2441, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528164

RESUMEN

PURPOSE: To evaluate the dosimetry and pharmacokinetics of the novel radiolabelled somatostatin receptor antagonist [177Lu]Lu-satoreotide tetraxetan in patients with advanced neuroendocrine tumours (NETs). METHODS: This study was part of a phase I/II trial of [177Lu]Lu-satoreotide tetraxetan, administered at a median cumulative activity of 13.0 GBq over three planned cycles (median activity/cycle: 4.5 GBq), in 40 patients with progressive NETs. Organ absorbed doses were monitored at each cycle using patient-specific dosimetry; the cumulative absorbed-dose limits were set at 23.0 Gy for the kidneys and 1.5 Gy for bone marrow. Absorbed dose coefficients (ADCs) were calculated using both patient-specific and model-based dosimetry for some patients. RESULTS: In all evaluated organs, maximum [177Lu]Lu-satoreotide tetraxetan uptake was observed at the first imaging timepoint (4 h after injection), followed by an exponential decrease. Kidneys were the main route of elimination, with a cumulative excretion of 57-66% within 48 h following the first treatment cycle. At the first treatment cycle, [177Lu]Lu-satoreotide tetraxetan showed a median terminal blood half-life of 127 h and median ADCs of [177Lu]Lu-satoreotide tetraxetan were 5.0 Gy/GBq in tumours, 0.1 Gy/GBq in the bone marrow, 0.9 Gy/GBq in kidneys, 0.2 Gy/GBq in the liver and 0.8 Gy/GBq in the spleen. Using image-based dosimetry, the bone marrow and kidneys received median cumulative absorbed doses of 1.1 and 10.8 Gy, respectively, after three cycles. CONCLUSION: [177Lu]Lu-satoreotide tetraxetan showed a favourable dosimetry profile, with high and prolonged tumour uptake, supporting its acceptable safety profile and promising efficacy. TRIAL REGISTRATION: NCT02592707. Registered October 30, 2015.


Asunto(s)
Tumores Neuroendocrinos , Humanos , Tumores Neuroendocrinos/radioterapia , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Anciano , Adulto , Radiometría , Lutecio/farmacocinética , Distribución Tisular , Somatostatina/análogos & derivados , Somatostatina/farmacocinética , Progresión de la Enfermedad , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Anciano de 80 o más Años , Octreótido/análogos & derivados , Octreótido/farmacocinética , Octreótido/uso terapéutico , Radioisótopos
9.
Eur J Nucl Med Mol Imaging ; 51(9): 2794-2805, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38658392

RESUMEN

PURPOSE: Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and radioligand therapy (RLT) of prostate cancer. Two novel PSMA-targeting radionuclide therapy agents, [177Lu]Lu-P17-087, and its albumin binder modified derivative, [177Lu]Lu-P17-088, were evaluated in metastatic castration-resistant prostate cancer (mCRPC) patients. The primary endpoint was dosimetry evaluation, the second endpoint was radiation toxicity assessment (CTCAE 5.0) and PSA response (PCWG3). METHODS: Patients with PSMA-positive tumors were enrolled after [68Ga]Ga-PSMA-11 PET/CT scan. Five mCRPC patients received [177Lu]Lu-P17-087 and four other patients received [177Lu]Lu-P17-088 (1.2 GBq/patient). Multiple whole body planar scintigraphy was performed at 1.5, 4, 24, 48, 72, 120 and 168 h after injection and one SPECT/CT imaging was performed at 24 h post-injection for each patient. Dosimetry evaluation was compared in both patient groups. RESULTS: Patients showed no major clinical side-effects under this low dose treatment. As expected [177Lu]Lu-P17-088 with longer blood circulation (due to its albumin binding) exhibited higher effective doses than [177Lu]Lu-P17-087 (0.151 ± 0.036 vs. 0.056 ± 0.019 mGy/MBq, P = 0.001). Similarly, red marrow received 0.119 ± 0.068 and 0.048 ± 0.020 mGy/MBq, while kidney doses were 0.119 ± 0.068 and 0.046 ± 0.022 mGy/MBq, respectively. [177Lu]Lu-P17-087 demonstrated excellent tumor uptake and faster kinetics; while [177Lu]Lu-P17-088 displayed a slower washout and higher average dose (7.75 ± 4.18 vs. 4.72 ± 2.29 mGy/MBq, P = 0.018). After administration of [177Lu]Lu-P17-087 and [177Lu]Lu-P17-088, 3/5 and 3/4 patients showed reducing PSA values, respectively. CONCLUSION: [177Lu]Lu-P17-088 and [177Lu]Lu-P17-087 displayed different pharmacokinetics but excellent PSMA-targeting dose delivery in mCRPC patients. These two agents are promising RLT agents for personalized treatment of mCRPC. Further studies with increased dose and frequency of RLT are warranted to evaluate the potential therapeutic efficacy. TRIAL REGISTRATION: 177Lu-P17-087/177Lu-P17-088 in Patients with Metastatic Castration-resistant Prostate Cancer (NCT05603559, Registered at 25 October, 2022). URL OF REGISTRY: https://classic. CLINICALTRIALS: gov/ct2/show/NCT05603559 .


Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Lutecio , Metástasis de la Neoplasia , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Anciano , Glutamato Carboxipeptidasa II/metabolismo , Lutecio/uso terapéutico , Antígenos de Superficie/metabolismo , Persona de Mediana Edad , Albúminas , Radiofármacos/uso terapéutico , Radiofármacos/farmacocinética , Anciano de 80 o más Años , Radioisótopos/uso terapéutico , Radiometría
10.
Eur J Nucl Med Mol Imaging ; 51(8): 2504-2514, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38512484

RESUMEN

PURPOSE: Although 221Fr and 213Bi have sufficient gamma emission probabilities, quantitative SPECT after [225Ac]Ac-PSMA-I&T therapy remains challenging due to low therapeutic activities. Furthermore, 221Fr and 213Bi may underlie a different pharmacokinetics due to alpha recoil. We conducted a quantitative SPECT study and a urine analysis to investigate the pharmacokinetics of 221Fr and 213Bi and the impact on image-based lesion and kidney dosimetry. METHODS: Five patients (7.7 ± 0.2 MBq [225Ac]Ac-PSMA-I&T) underwent an abdominal SPECT/CT (1 h) at 24 and 48 h (Siemens Symbia T2, high-energy collimator, 440 keV/218 keV (width 20%), 78 keV (width 50%)). Quantitative SPECT was reconstructed using MAP-EM with attenuation and transmission-dependent scatter corrections and resolution modelling. Time-activity curves for kidneys (CT-based) and lesions (80% isocontour 24 h) were fitted mono-exponentially. Urine samples collected along with each SPECT/CT were measured in a gamma counter until secular equilibrium was reached. RESULTS: Mean kidney and lesion effective half-lives were as follows: 213Bi, 27 ± 6/38 ± 10 h; 221Fr, 24 ± 6/38 ± 11 h; 78 keV, 23 ± 7/39 ± 13 h. The 213Bi-to-221Fr kidney SUV ratio increased by an average of 9% from 24 to 48 h. Urine analysis revealed an increasing 213Bi-to-225Ac ratio (24 h, 0.98 ± 0.15; 48 h, 1.08 ± 0.09). Mean kidney and lesion absorbed doses were 0.17 ± 0.06 and 0.36 ± 0.1 Sv RBE = 5 /MBq using 221Fr and 213Bi SPECT images, compared to 0.16 ± 0.05/0.18 ± 0.06 and 0.36 ± 0.1/0.38 ± 0.1 Sv RBE = 5 /MBq considering either the 221Fr or 213Bi SPECT. CONCLUSION: SPECT/CT imaging and urine analysis showed minor differences of up to 10% in the daughter-specific pharmacokinetics. These variances had a minimal impact on the lesion and kidney dosimetry which remained within 8%.


Asunto(s)
Radiometría , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Humanos , Masculino , Actinio/farmacocinética , Actinio/química , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Persona de Mediana Edad , Riñón/diagnóstico por imagen , Riñón/metabolismo , Anciano , Radiofármacos/farmacocinética , Glutamato Carboxipeptidasa II/metabolismo , Radioisótopos/farmacocinética , Radioisótopos/uso terapéutico
11.
Eur J Nucl Med Mol Imaging ; 51(6): 1753-1762, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38212531

RESUMEN

PURPOSE: This is a first-in-human study to evaluate the radiation dosimetry of a new prostate-specific membrane antigen (PSMA)-targeted radiopharmaceutical, [18F]AlF-P16-093, and also initial investigation of its ability to detect PSMA-positive tumors using PET scans in a cohort of prostate cancer (PCa) patients. METHODS: The [18F]AlF-P16-093 was automatically synthesized with a GE TRACERlab. A total of 23 patients with histopathologically proven PCa were prospectively enrolled. Dosimetry and biodistribution study investigations were carried out on a subset of six (6) PCa patients, involving multiple time-point scanning. The mean absorbed doses were estimated with PMOD and OLINDA software. RESULTS: [18F]AlF-P16-093 was successfully synthesized, and radiochemical purity was > 95%, and average labeling yield was 36.5 ± 8.3% (decay correction, n = 12). The highest tracer uptake was observed in the kidneys, spleen, and liver, contributing to an effective dose of 16.8 ± 1.3 µSv/MBq, which was ~ 30% lower than that of [68Ga]Ga-P16-093. All subjects tolerated the PET examination well, and no reportable side-effects were observed. The PSMA-positive tumors displayed rapid uptake, and they were all detectable within 10 min, and no additional lesions were observed in the following multi-time points scanning. Each patient had at least one detectable tumor lesion, and a total of 356 tumor lesions were observed, including intraprostatic, lymph node metastases, bone metastases, and other soft tissue metastases. CONCLUSIONS: We report herein a streamlined method for high yield synthesis of [18F]AlF-P16-093. Preliminary study in PCa patients has demonstrated its safety and acceptable radiation dosimetry. The initial diagnostic study indicated that [18F]AlF-P16-093 PET/CT is efficacious and potentially useful for a widespread application in the diagnosis of PCa patients.


Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata , Radiometría , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Glutamato Carboxipeptidasa II/metabolismo , Persona de Mediana Edad , Antígenos de Superficie/metabolismo , Distribución Tisular , Radiofármacos/farmacocinética , Radiofármacos/química , Radioisótopos de Flúor/química , Anciano de 80 o más Años , Tomografía Computarizada por Tomografía de Emisión de Positrones
12.
Eur J Nucl Med Mol Imaging ; 51(7): 2100-2113, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347299

RESUMEN

PURPOSE: Evaluation of 90Y liver radioembolization post-treatment clinical data using a whole-body Biograph Vision Quadra PET/CT to investigate the potential of protocol optimization in terms of scan time and dosimetry. METHODS: 17 patients with hepatocellular carcinoma with median (IQR) injected activity 2393 (1348-3298) MBq were included. Pre-treatment dosimetry plan was based on 99mTc-MAA SPECT/CT with Simplicit90Y™ and post-treatment validation with Quadra using Simplicit90Y™ and HERMIA independently. Regarding the image analysis, mean and peak SNR, the coefficient of variation (COV) and lesion-to-background ratio (LBR) were evaluated. For the post-treatment dosimetry validation, the mean tumor, whole liver and lung absorbed dose evaluation was performed using Simplicit90Y and HERMES. Images were reconstructed with 20-, 15-, 10-, 5- and 1- min sinograms with 2, 4, 6 and 8 iterations. Wilcoxon signed rank test was used to show statistical significance (p < 0.05). RESULTS: There was no difference of statistical significance between 20- and 5- min reconstructed times for the peak SNR, COV and LBR. In addition, there was no difference of statistical significance between 20- and 1- min reconstructed times for all dosimetry metrics. Lung dosimetry showed consistently lower values than the expected. Tumor absorbed dose based on Simplicit90Y™ was similar to the expected while HERMES consistently underestimated significantly the measured tumor absorbed dose. Finally, there was no difference of statistical significance between expected and measured tumor, whole liver and lung dose for all reconstruction times. CONCLUSION: In this study we evaluated, in terms of image quality and dosimetry, whole-body PET clinical images of patients after having been treated with 90Y microspheres radioembolization for liver cancer. Compared to the 20-min standard scan, the simulated 5-min reconstructed images provided equal image peak SNR and noise behavior, while performing also similarly for post-treatment dosimetry of tumor, whole liver and lung absorbed doses.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Hígado , Pulmón , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos de Itrio , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Radioisótopos de Itrio/uso terapéutico , Femenino , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Embolización Terapéutica/métodos , Persona de Mediana Edad , Anciano , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/radioterapia , Pulmón/diagnóstico por imagen , Pulmón/efectos de la radiación , Hígado/diagnóstico por imagen , Radiometría/métodos , Imagen de Cuerpo Entero/métodos
13.
BMC Cancer ; 24(1): 936, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090564

RESUMEN

PURPOSE: To evaluate the dosimetric characteristics of ZAP-X stereotactic radiosurgery (SRS) for single brain metastasis by comparing with two mature SRS platforms. METHODS: Thirteen patients with single brain metastasis treated with CyberKnife (CK) G4 were selected retrospectively. The prescription dose for the planning target volume (PTV) was 18-24 Gy for 1-3 fractions. The PTV volume ranged from 0.44 to 11.52 cc.Treatment plans of thirteen patients were replanned using the ZAP-X plan system and the Gamma Knife (GK) ICON plan system with the same prescription dose and organs at risk (OARs) constraints. The prescription dose of PTV was normalized to 70% for both ZAP-X and CK, while it was 50% for GK. The dosimetric parameters of three groups included the plan characteristics (CI, GI, GSI, beams, MUs, treatment time), PTV (D2, D95, D98, Dmin, Dmean, Coverage), brain tissue (volume of 100%-10% prescription dose irradiation V100%-V10%, Dmean) and other OARs (Dmax, Dmean),all of these were compared and evaluated. All data were read and analyzed with MIM Maestro. One-way ANOVA or a multisample Friedman rank sum test was performed, where p < 0.05 indicated significant differences. RESULTS: The CI of GK was significantly lower than that of ZAP-X and CK. Regarding the mean value, ZAP-X had a lower GI and higher GSI, but there was no significant difference among the three groups. The MUs of ZAP-X were significantly lower than those of CK, and the mean value of the treatment time of ZAP-X was significantly shorter than that of CK. For PTV, the D95, D98, and target coverage of CK were higher, while the mean of Dmin of GK was significantly lower than that of CK and ZAP-X. For brain tissue, ZAP-X showed a smaller volume from V100% to V20%; the statistical results of V60% and V50% showed a difference between ZAP-X and GK, while the V40% and V30% showed a significant difference between ZAP-X and the other two groups; V10% and Dmean indicated that GK was better. Excluding the Dmax of the brainstem, right optic nerve and optic chiasm, the mean value of all other OARs was less than 1 Gy. For the brainstem, GK and ZAP-X had better protection, especially at the maximum dose. CONCLUSION: For the SRS treating single brain metastasis, all three treatment devices, ZAP-X system, CyberKnife G4 system, and GammaKnife system, could meet clinical treatment requirements. The newly platform ZAP-X could provide a high-quality plan equivalent to or even better than CyberKnife and Gamma Knife, with ZAP-X presenting a certain dose advantage, especially with a more conformal dose distribution and better protection for brain tissue. As the ZAP-X systems get continuous improvements and upgrades, they may become a new SRS platform for the treatment of brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Radiocirugia/métodos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Radiometría , Anciano , Adulto , Órganos en Riesgo/efectos de la radiación
14.
J Neurooncol ; 169(1): 11-23, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38902561

RESUMEN

PURPOSE: GammaTile® (GT) is a brachytherapy platform that received Federal Drug Administration (FDA) approval as brain tumor therapy in late 2018. Here, we reviewed our institutional experience with GT as treatment for recurrent glioblastomas and characterized dosimetric parameter and associated clinical outcome. METHODS AND MATERIALS: A total of 20 consecutive patients with 21 (n = 21) diagnosis of recurrent glioblastoma underwent resection followed by intraoperative GT implant between 01/2019 and 12/2020. Data on gross tumor volume (GTV), number of GT units implanted, dose coverage for the high-risk clinical target volume (HR-CTV), measured by D90 or dose received by 90% of the HR-CTV, dose to organs at risk, and six months local control were collected. RESULTS: The median D90 to HR-CTV was 56.0 Gy (31.7-98.7 Gy). The brainstem, optic chiasm, ipsilateral optic nerve, and ipsilateral hippocampus median Dmax were 11.2, 5.4, 6.4, and 10.0 Gy, respectively. None of the patients in this study cohort suffered from radiation necrosis or adverse events attributable to the GT. Correlation was found between pre-op GTV, the volume of the resection cavity, and the number of GT units implanted. Of the resection cavities, 7/21 (33%) of the cavity experienced shrinkage, 3/21 (14%) remained stable, and 11/21 (52%) of the cavities expanded on the 3-months post-resection/GT implant MRIs. D90 to HR-CTV was found to be associated with local recurrence at 6-month post GT implant, suggesting a dose response relationship (p = 0.026). The median local recurrence-free survival was 366.5 days (64-1,098 days), and a trend towards improved local recurrence-free survival was seen in patients with D90 to HR-CTV ≥ 56 Gy (p = 0.048). CONCLUSIONS: Our pilot, institutional experience provides clinical outcome, dosimetric considerations, and offer technical guidance in the clinical implementation of GT brachytherapy.


Asunto(s)
Braquiterapia , Neoplasias Encefálicas , Glioblastoma , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Masculino , Femenino , Persona de Mediana Edad , Braquiterapia/métodos , Anciano , Proyectos Piloto , Planificación de la Radioterapia Asistida por Computador/métodos , Glioblastoma/radioterapia , Glioblastoma/cirugía , Glioblastoma/diagnóstico por imagen , Adulto , Recurrencia Local de Neoplasia/radioterapia , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos , Estudios de Seguimiento , Radiometría , Órganos en Riesgo/efectos de la radiación , Pronóstico
15.
Eur Radiol ; 34(4): 2416-2425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37798408

RESUMEN

OBJECTIVES: The most accurate method for estimating patient effective dose (a principal metric for tracking patient radiation exposure) from computed tomography (CT) requires time-intensive Monte Carlo simulation. A simpler method multiplies a scalar coefficient by the widely available scanner-reported dose length product (DLP) to estimate effective dose. We developed new adult effective dose coefficients using actual patient scans and assessed their agreement with Monte Carlo simulation. METHODS: A multicenter sample of 216,906 adult CT scans was prospectively assembled in 2015-2020 from the University of California San Francisco International CT Dose Registry and the University of Florida library of computational phantoms. We generated effective dose coefficients for eight body regions, stratified by patient sex, diameter, and scanner manufacturer. We applied the new coefficients to DLPs to calculate effective doses and assess their correlations with Monte Carlo radiation transport-generated effective dose. RESULTS: Effective dose coefficients varied by body region and decreased in magnitude with increasing patient diameter. Coefficients were approximately twofold higher for torso scans in smallest compared with largest diameter categories. For example, abdomen and pelvis coefficients decreased from 0.027 to 0.013 mSv/mGy-cm between the 16-20 cm and 41+ cm categories. There were modest but consistent differences by sex and manufacturer. Diameter-based coefficients used to estimate effective dose produced strong correlations with the reference standard (Pearson correlations 0.77-0.86). The reported conversion coefficients differ from previous studies, particularly in neck CT. CONCLUSIONS: New effective dose coefficients derived from empirical clinical scans can be used to easily estimate effective dose using scanner-reported DLP. CLINICAL RELEVANCE STATEMENT: Scalar coefficients multiplied by DLP offer a simple approximation to effective dose, a key radiation dose metric. New effective dose coefficients from this study strongly correlate with gold standard, Monte Carlo-generated effective dose, and differ somewhat from previous studies. KEY POINTS: • Previous effective dose coefficients were derived from theoretical models rather than real patient data. • The new coefficients (from a large registry/phantom library) differ from previous studies. • The new coefficients offer reasonably reliable values for estimating effective dose.


Asunto(s)
Modelos Teóricos , Radiometría , Adulto , Humanos , Simulación por Computador , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación , Radiometría/métodos , Tomografía Computarizada por Rayos X/métodos , Masculino , Femenino
16.
J Nucl Cardiol ; 34: 101823, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360262

RESUMEN

OBJECTIVES: This study assessed the imaging characteristics, pharmacokinetics and safety of XTR004, a novel 18F-labeled Positron Emission Tomography (PET) myocardial perfusion imaging tracer, after a single injection at rest in humans. METHODS: Eleven healthy subjects (eight men and three women) received intravenous XTR004 (239-290 megabecquerel [MBq]). Safety profiles were monitored on the dosing day and three follow-up visits. Multiple whole-body PET scans were conducted over 4.7 h to evaluate biodistribution and radiation dosimetry. Blood and urine samples collected for 7.25 h were metabolically corrected to characterize pharmacokinetics. RESULTS: In the first 0-12 min PET images of ten subjects, liver (26.81 ± 4.01), kidney (11.43 ± 2.49), lung (6.75 ± 1.76), myocardium (4.72 ± 0.67) and spleen (3.1 ± 0.84) exhibited the highest percentage of the injected dose (%ID). Myocardial uptake of XTR004 in the myocardium initially reached 4.72 %ID and 7.06 g/mL, and negligibly changed within an hour (Δ: 7.20%, 5.95%). The metabolically corrected plasma peaked at 2.5 min (0.0013896 %ID/g) and halved at 45.2 min. Whole-body effective dose was 0.0165 millisievert (mSv)/MBq. Cumulative urine excretion was 8.18%. Treatment-related adverse events occurred in seven out of eleven subjects (63.6%), but no severe adverse event was reported. CONCLUSIONS: XTR004 demonstrated a favorable safety profile, rapid, high, and stable myocardial uptake and excellent potential for PET myocardial perfusion imaging (MPI). Further exploration of XTR004 PET MPI for detecting myocardial ischemia is warranted.


Asunto(s)
Tomografía de Emisión de Positrones , Radiometría , Masculino , Humanos , Femenino , Distribución Tisular , Radiometría/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Perfusión
17.
Pediatr Blood Cancer ; 71(3): e30806, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38082548

RESUMEN

BACKGROUND: 131 I-metaiodobenzylguanidine (131 I-mIBG) effectiveness in children with metastasised neuroblastoma (NB) is linked to the effective dose absorbed by the target; a target of 4 Gy whole-body dose threshold has been proposed. Achieving this dose often requires administering 131 I-mIBG twice back-to-back, which may cause haematological toxicity. In this study, we tried identifying the factors predicting the achievement of 4 Gy whole-body dose with a single radiopharmaceutical administration. MATERIALS AND METHODS: Children affected by metastatic NB and treated with a high 131 I-mIBG activity (>450 MBq (megabecquerel)/kg) were evaluated retrospectively. Kinetics measurements were carried out at multiple time points to estimate the whole-body dose, which was compared with clinical and activity-related parameters. RESULTS: Seventeen children (12 females, median age 3 years, age range: 1.5-6.9 years) were included. Eleven of them still bore the primary tumour. The median whole-body dose was 2.88 Gy (range: 1.63-4.22 Gy). Children with a 'bulky' primary (>30 mL) received a higher whole-body dose than those with smaller or surgically removed primaries (3.42 ± 0.74 vs. 2.48 ± 0.65 Gy, respectively, p = .016). Conversely, the correlation between activity/kg and the whole-body dose was moderate (R: 0.42, p = .093). In the multivariate analysis, the volume of the primary tumour was the most relevant predictor of the whole-body dose (p = .002). CONCLUSIONS: These data suggest that the presence of a bulky primary tumour can significantly prolong the 131 I-mIBG biological half-life, effectively increasing the absorbed whole-body dose. This information could be used to model the administered activity, allowing to attain the target dose without needing a two-step radiopharmaceutical administration.


Asunto(s)
Neuroblastoma , Radiofármacos , Niño , Femenino , Humanos , Lactante , Preescolar , Radiofármacos/uso terapéutico , Radiometría , Estudios Retrospectivos , 3-Yodobencilguanidina/uso terapéutico , Neuroblastoma/patología , Radioisótopos de Yodo/uso terapéutico
18.
Acta Obstet Gynecol Scand ; 103(4): 767-774, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37491770

RESUMEN

During pregnancy, the use of radiation therapy for cancer treatment is often considered impossible due to the assumed associated fetal risks. However, suboptimal treatment of pregnant cancer patients and unjustifiable delay in radiation therapy until after delivery can be harmful for both patient and child. In non-pregnant patients, proton-radiation therapy is increasingly administered because of its favorable dosimetric properties compared with photon-radiation therapy. Although data on the use of pencil beam scanning proton-radiation therapy during pregnancy are scarce, different case reports and dosimetric studies have indicated a more than 10-fold reduction in fetal radiation exposure compared with photon-radiation therapy. Nonetheless, the implementation of proton-radiation therapy during pregnancy requires complex fetal dosimetry for the neutron-dominated out-of-field radiation dose and faces a lack of clinical guidelines. Further exploration and standardization of proton-radiation therapy during pregnancy will be necessary to improve radiotherapeutic management of pregnant women with cancer and further reduce risks for their offspring.


Asunto(s)
Terapia de Protones , Femenino , Humanos , Embarazo , Feto , Neutrones , Protones , Radiometría , Dosificación Radioterapéutica
19.
World J Surg Oncol ; 22(1): 147, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831328

RESUMEN

BACKGROUND: Radio(chemo)therapy is often required in pelvic malignancies (cancer of the anus, rectum, cervix). Direct irradiation adversely affects ovarian and endometrial function, compromising the fertility of women. While ovarian transposition is an established method to move the ovaries away from the radiation field, surgical procedures to displace the uterus are investigational. This study demonstrates the surgical options for uterine displacement in relation to the radiation dose received.  METHODS: The uterine displacement techniques were carried out sequentially in a human female cadaver to demonstrate each procedure step by step and assess the uterine positions with dosimetric CT scans in a hybrid operating room. Two treatment plans (anal and rectal cancer) were simulated on each of the four dosimetric scans (1. anatomical position, 2. uterine suspension of the round ligaments to the abdominal wall 3. ventrofixation of the uterine fundus at the umbilical level, 4. uterine transposition). Treatments were planned on Eclipse® System (Varian Medical Systems®,USA) using Volumetric Modulated Arc Therapy. Data about maximum (Dmax) and mean (Dmean) radiation dose received and the volume receiving 14 Gy (V14Gy) were collected. RESULTS: All procedures were completed without technical complications. In the rectal cancer simulation with delivery of 50 Gy to the tumor, Dmax, Dmean and V14Gy to the uterus were respectively 52,8 Gy, 34,3 Gy and 30,5cc (1), 31,8 Gy, 20,2 Gy and 22.0cc (2), 24,4 Gy, 6,8 Gy and 5,5cc (3), 1,8 Gy, 0,6 Gy and 0,0cc (4). For anal cancer, delivering 64 Gy to the tumor respectively 46,7 Gy, 34,8 Gy and 31,3cc (1), 34,3 Gy, 20,0 Gy and 21,5cc (2), 21,8 Gy, 5,9 Gy and 2,6cc (3), 1,4 Gy, 0,7 Gy and 0,0cc (4). CONCLUSIONS: The feasibility of several uterine displacement procedures was safely demonstrated. Increasing distance to the radiation field requires more complex surgical interventions to minimize radiation exposure. Surgical strategy needs to be tailored to the multidisciplinary treatment plan, and uterine transposition is the most technically complex with the least dose received.


Asunto(s)
Cadáver , Preservación de la Fertilidad , Neoplasias Pélvicas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Útero , Humanos , Femenino , Planificación de la Radioterapia Asistida por Computador/métodos , Preservación de la Fertilidad/métodos , Útero/efectos de la radiación , Útero/cirugía , Útero/patología , Neoplasias Pélvicas/radioterapia , Neoplasias Pélvicas/cirugía , Neoplasias Pélvicas/patología , Radioterapia de Intensidad Modulada/métodos , Tratamientos Conservadores del Órgano/métodos , Órganos en Riesgo/efectos de la radiación , Pronóstico , Radiometría/métodos
20.
Radiat Environ Biophys ; 63(2): 181-183, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38376815

RESUMEN

The necessity of precise dosimetry and its documentation in research is less obvious than in medicine and in radiological protection. However, in radiation research, results can only be validated if experiments were carried out with sufficient precision and described with sufficient details, especially information regarding dosimetry. In order to ensure this, an initiative was launched to establish reproducible dosimetry reporting parameters in published studies. Minimum standards for reporting radiation dosimetry information were developed and published in parallel in the International Journal of Radiation Biology and Radiation Research. As editors of Radiation and Environmental Biophysics, we support this initiative and reproduce the agreed minimum irradiation parameters that should be reported in publications on radiation biology submitted to our journal.


Asunto(s)
Radiometría , Radiometría/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA