Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 96(5): 600-608, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31455676

RESUMEN

Induction of cytochrome P450 enzyme 3A (CYP3A) in response to pregnane X receptor (PXR) activators shows species-specific differences. To study the induction of human CYP3A in response to human PXR activators, we generated a double-humanized mouse model of PXR and CYP3A. CYP3A-humanized mice generated by using a mouse artificial chromosome (MAC) vector containing the entire genomic human CYP3A locus (hCYP3A-MAC mouse line) were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR, resulting in double-humanized mice (hCYP3A-MAC/hPXR mouse line). Oral administration of the human PXR activator rifampicin increased hepatic expression of CYP3A4 mRNA and triazolam (TRZ) 1'- and 4-hydroxylation activities, CYP3A probe activities, in the liver and intestine microsomes of hCYP3A-MAC/hPXR mice. The plasma concentration of TRZ after oral dosing was significantly decreased by rifampicin treatment in hCYP3A-MAC/hPXR mice but not in hCYP3A-MAC mice. In addition, mass spectrometry imaging analysis showed that rifampicin treatment increased the formation of hydroxy TRZ in the intestine of hCYP3A-MAC/hPXR mice after oral dosing of TRZ. The plasma concentration of 1'- and 4-hydroxy TRZ in portal blood was also increased by rifampicin treatment in hCYP3A-MAC/hPXR mice. These results suggest that the hCYP3A-MAC/hPXR mouse line may be a useful model to predict human PXR-dependent induction of metabolism of CYP3A4 substrates in the liver and intestine. SIGNIFICANCE STATEMENT: We generated a double-humanized mouse line for CYP3A and PXR. Briefly, CYP3A-humanized mice generated by using a mouse artificial chromosome vector containing the entire genomic human CYP3A locus were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR. Expression of CYP3A4 and metabolism of triazolam, a typical CYP3A substrate, in the liver of CYP3A/PXR-humanized mice were enhanced in response to rifampicin, a typical human PXR activator. Enhancement of triazolam metabolism in the intestine of CYP3A/PXR-humanized mice was firstly shown by combination of mass spectrometry imaging of sliced intestine and liquid chromatography with tandem mass spectrometry analysis of metabolite concentration in portal blood after oral dosing of triazolam.


Asunto(s)
Inductores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/biosíntesis , Intestino Delgado/metabolismo , Hígado/metabolismo , Vena Porta/metabolismo , Receptor X de Pregnano/biosíntesis , Animales , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Humanos , Intestino Delgado/efectos de los fármacos , Hígado/efectos de los fármacos , Espectrometría de Masas/métodos , Ratones , Ratones Noqueados , Ratones Transgénicos , Vena Porta/efectos de los fármacos
2.
Toxicol Lett ; 332: 171-180, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32659470

RESUMEN

The pregnane X receptor (PXR) has been established to induce chemoresistance and metabolic diseases. Ochratoxin A (OTA), a mycotoxin, decreases the expression of PXR protein in human primary hepatocytes. OTA is chlorinated and has a methylated lactone ring. Both structures are associated with OTA toxicity. The study was to test the hypothesis that structural modifications differentially impact PXR blocking activity over cytotoxicity. To test this hypothesis, OTA-M and OTA-Cl/M were synthesized. OTA-M lacked the methyl group of the lactone-ring, whereas OTA-Cl/M had neither the methyl group nor the chlorine atom. The blocking activity of PXR activation was determined in a stable cell line, harboring both PXR (coding sequence) and its luciferase element reporter. OTA-Cl/M showed the highest blocking activity, followed by OTA-M and OTA. OTA-Cl/M was 60 times as potent as the common PXR blocker ketoconazole based on calculated IC50 values. OTA-Cl/M decreased by 90 % the expression of PXR protein and was the least cytotoxic among the tested compounds. Molecular docking identified that OTA and its derivatives interacted with different sets of residues in PXR, providing a molecular basis for selectivity. Excessive activation of PXR has been implicated in chemoresistance and metabolic diseases. Downregulation of PXR protein expression likely delivers an effective mechanism against structurally diverse PXR agonists.


Asunto(s)
Carcinógenos/química , Carcinógenos/toxicidad , Ocratoxinas/química , Ocratoxinas/toxicidad , Receptor X de Pregnano/antagonistas & inhibidores , Supervivencia Celular , Desmetilación , Expresión Génica/efectos de los fármacos , Células HEK293 , Halogenación , Humanos , Cetoconazol/farmacología , Simulación del Acoplamiento Molecular , Receptor X de Pregnano/biosíntesis
3.
Environ Pollut ; 244: 588-599, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30384064

RESUMEN

Adenosine triphosphate-binding cassette (ABC) transporters, including P-glycoprotein (Pgp) and multi-resistance associated proteins (Mrps), have been considered important participants in the self-protection of zebrafish embryos against environmental pollutants, but their possible involvement in the efflux and detoxification of quantum dots (QDs), as well as their regulation mechanism are currently unclear. In this work, gene expression alterations of ABC transporters, nuclear receptors, and oxidative stress signaling in zebrafish embryos after the treatment of mercaptopropionic acid (MPA)CdTe QDs and MPA-CdSCdTe QDs were investigated. It was observed that both QDs caused concentration-dependent delayed hatching effects and the subsequent induction of transporters like mrp1&2 in zebrafish embryos, indicating the protective role of corresponding proteins against CdTe QDs. Accompanying these alterations, expressions of nuclear receptors including the pregnane X receptor (pxr), aryl hydrocarbon receptor (ahr) 1b, and peroxisome proliferator-activated receptor (ppar)-ß were induced by QDs in a concentration- and time-dependent manner. Moreover, elevated oxidative stress, reflected by the reduction of glutathione (GSH) level and superoxide dismutase (SOD) activities, as well as the dramatic induction of nuclear factor E2 related factor (nrf) 2, was also found. More importantly, alterations of pxr and nrf2 were more pronounced than that of mrps, and these receptors exhibited an excellent correlation with delayed hatching rate in the same embryos (R2 > 0.8). Results from this analysis demonstrated that the induction of mrp1 and mrp2 could be important components for the detoxification of QDs in zebrafish embryos. These transporters could be modulated by nuclear receptors and oxidative stress signaling. In addition, up-regulation of pxr and nrf2 could be developed as toxic biomarkers of CdTe QDs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Biotransformación/fisiología , Compuestos de Cadmio/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/fisiología , Puntos Cuánticos/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Telurio/toxicidad , Pez Cebra/metabolismo , Ácido 3-Mercaptopropiónico/química , Transportadoras de Casetes de Unión a ATP/genética , Animales , Embrión no Mamífero/efectos de los fármacos , Glutatión/metabolismo , Inactivación Metabólica , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/biosíntesis , Factor 2 Relacionado con NF-E2/metabolismo , PPAR-beta/biosíntesis , Receptor X de Pregnano/biosíntesis , Puntos Cuánticos/química , Receptores de Hidrocarburo de Aril/biosíntesis , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA