Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.422
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 176(5): 1143-1157.e13, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30794775

RESUMEN

We tested a newly described molecular memory system, CCR5 signaling, for its role in recovery after stroke and traumatic brain injury (TBI). CCR5 is uniquely expressed in cortical neurons after stroke. Post-stroke neuronal knockdown of CCR5 in pre-motor cortex leads to early recovery of motor control. Recovery is associated with preservation of dendritic spines, new patterns of cortical projections to contralateral pre-motor cortex, and upregulation of CREB and DLK signaling. Administration of a clinically utilized FDA-approved CCR5 antagonist, devised for HIV treatment, produces similar effects on motor recovery post stroke and cognitive decline post TBI. Finally, in a large clinical cohort of stroke patients, carriers for a naturally occurring loss-of-function mutation in CCR5 (CCR5-Δ32) exhibited greater recovery of neurological impairments and cognitive function. In summary, CCR5 is a translational target for neural repair in stroke and TBI and the first reported gene associated with enhanced recovery in human stroke.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Receptores CCR5/metabolismo , Accidente Cerebrovascular/terapia , Anciano , Anciano de 80 o más Años , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Corteza Motora/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores CCR5/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos
2.
Annu Rev Neurosci ; 41: 25-40, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29490196

RESUMEN

The development of advanced noninvasive techniques to image the human brain has enabled the demonstration of structural plasticity during adulthood in response to motor learning. Understanding the basic mechanisms of structural plasticity in the context of motor learning is essential to improve motor rehabilitation in stroke patients. Here, we review and discuss the emerging evidence for motor-learning-related structural plasticity and the implications for stroke rehabilitation. In the clinical context, a few studies have started to assess the effects of rehabilitation on structural measures to understand recovery poststroke and additionally to predict intervention outcomes. Structural imaging will likely have a role in the future in providing measures that inform patient stratification for optimal outcomes.


Asunto(s)
Encéfalo/patología , Aprendizaje/fisiología , Actividad Motora/fisiología , Plasticidad Neuronal/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología
3.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38724284

RESUMEN

While ipsilesional cortical electroencephalography has been associated with poststroke recovery mechanisms and outcomes, the role of the cerebellum and its interaction with the ipsilesional cortex is still largely unknown. We have previously shown that poststroke motor control relies on increased corticocerebellar coherence (CCC) in the low beta band to maintain motor task accuracy and to compensate for decreased excitability of the ipsilesional cortex. We now extend our work to investigate corticocerebellar network changes associated with chronic stimulation of the dentato-thalamo-cortical pathway aimed at promoting poststroke motor rehabilitation. We investigated the excitability of the ipsilesional cortex, the dentate (DN), and their interaction as a function of treatment outcome measures. Relative to baseline, 10 human participants (two women) at the end of 4-8 months of DN deep brain stimulation (DBS) showed (1) significantly improved motor control indexed by computerized motor tasks; (2) significant increase in ipsilesional premotor cortex event-related desynchronization that correlated with improvements in motor function; and (3) significant decrease in CCC, including causal interactions between the DN and ipsilesional cortex, which also correlated with motor function improvements. Furthermore, we show that the functional state of the DN in the poststroke state and its connectivity with the ipsilesional cortex were predictive of motor outcomes associated with DN-DBS. The findings suggest that as participants recovered, the ipsilesional cortex became more involved in motor control, with less demand on the cerebellum to support task planning and execution. Our data provide unique mechanistic insights into the functional state of corticocerebellar-cortical network after stroke and its modulation by DN-DBS.


Asunto(s)
Núcleos Cerebelosos , Estimulación Encefálica Profunda , Recuperación de la Función , Accidente Cerebrovascular , Humanos , Femenino , Estimulación Encefálica Profunda/métodos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Recuperación de la Función/fisiología , Anciano , Núcleos Cerebelosos/fisiopatología , Núcleos Cerebelosos/fisiología , Corteza Motora/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto , Electroencefalografía
4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38879808

RESUMEN

Navigated repetitive transmagnetic stimulation is a non-invasive and safe brain activity modulation technique. When combined with the classical rehabilitation process in stroke patients it has the potential to enhance the overall neurologic recovery. We present a case of a peri-operative stroke, treated with ultra-early low frequency navigated repetitive transmagnetic stimulation over the contralesional hemisphere. The patient received low frequency navigated repetitive transmagnetic stimulation within 12 hours of stroke onset for seven consecutive days and a significant improvement in his right sided weakness was noticed and he was discharge with normal power. This was accompanied by an increase in the number of positive responses evoked by navigated repetitive transmagnetic stimulation and a decrease of the resting motor thresholds at a cortical level. Subcortically, a decrease in the radial, axial, and mean diffusivity were recorded in the ipsilateral corticospinal tract and an increase in fractional anisotropy, axial diffusivity, and mean diffusivity was observed in the interhemispheric fibers of the corpus callosum responsible for the interhemispheric connectivity between motor areas. Our case demonstrates clearly that ultra-early low frequency navigated repetitive transmagnetic stimulation applied to the contralateral motor cortex can lead to significant clinical motor improvement in patients with subcortical stroke.


Asunto(s)
Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Masculino , Estimulación Magnética Transcraneal/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/cirugía , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Tractos Piramidales/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Potenciales Evocados Motores/fisiología
5.
Stroke ; 55(2): 519-522, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38095119

RESUMEN

Implantable vagus nerve stimulation, paired with high-dose occupational therapy, has been shown to be effective in improving upper limb function among patients with stroke and received regulatory approval from the US Food and Drug Administration and the Centers for Medicare & Medicaid Services. Combining nonsurgical and surgical approaches of vagus nerve stimulation in recent meta-analyses has resulted in misleading reports on the efficacy of each type of stimulation among patients with stroke. This article aims to clarify the confusion surrounding implantable vagus nerve stimulation as a poststroke treatment option, highlighting the importance of distinguishing between transcutaneous auricular vagus nerve stimulation and implantable vagus nerve stimulation. Recent meta-analyses on vagus nerve stimulation have inappropriately combined studies of fundamentally different interventions, outcome measures, and participant selection, which do not conform to methodological best practices and, hence, cannot be used to deduce the relative efficacy of the different types of vagus nerve stimulation for stroke rehabilitation. Health care providers, patients, and insurers should rely on appropriately designed research to guide well-informed decisions.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación del Nervio Vago , Anciano , Estados Unidos , Humanos , Estimulación del Nervio Vago/métodos , Resultado del Tratamiento , Medicare , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos
6.
Stroke ; 55(1): 146-155, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037226

RESUMEN

BACKGROUND: The rehabilitation of upper limb sensorimotor performance after stroke requires the assessment of daily use, the identification of key levels of impairment, and monitoring the course of recovery. It needs to be answered, how laboratory-based assessments and everyday behavior are connected, which dimension of metrics, that is, volume, intensity, or quality, is most sensitive to reduced function, and what sensor, that is, gyroscope or accelerometer, is best suited to gather such data. METHODS: Performance in laboratory-based sensorimotor tests, as well as smartwatch-derived kinematic data of everyday life relative upper limb activity, during 1 day of inpatient neurorehabilitation (Germany, 2022) of 50 patients with stroke, was cross-sectionally assessed and resulting laterality indices (performance ratios) between the limbs were analyzed using ANCOVAs and principal component analysis. RESULTS: Laboratory-based tests revealed the strongest laterality indices, followed by smartwatch-based (intensity>quality>volume) metrics. Angular velocity-based metrics revealed higher laterality indices than acceleration-based ones. Laterality indices were overall well associated; however, a principal component analysis suggested upper limb impairments to be unidimensional. CONCLUSIONS: Our findings suggest that the use of sensors can deliver valid information of stroke-related laterality. It appeared that commonly used metrics that estimate the volume of use (ie, energy expenditure) are not the most sensitive. Especially reached intensities could be well used for monitoring, because they are more dependent on the performance of the sensorimotor system and less on confounders like age. The unidimensionality of the upper limb laterality suggests that an impaired limb with reduced movement quality and the inability to reach higher intensities will be used less in everyday life, especially when it is the nondominant side.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Estudios Transversales , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/diagnóstico , Extremidad Superior , Actividades Cotidianas , Recuperación de la Función
7.
Stroke ; 55(10): 2579-2583, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39171399

RESUMEN

In many branches of medicine, treatment is guided by measuring its effects on underlying physiology. In this regard, the efficacy of rehabilitation/recovery therapies could be enhanced if their administration was guided by measurements that directly capture treatment effects on neural function. Measures of brain function via EEG may be useful toward this goal and have advantages such as ease of bedside acquisition, safety, and low cost. This review synthetizes EEG studies during the subacute phase poststroke, when spontaneous recovery is maximal, and focuses on movement. Event-related measures reflect cortical activation and inhibition, while connectivity measures capture the function of cortical networks. Several EEG-based measures are related to motor outcomes poststroke and warrant further evaluation. Ultimately, they may be useful for clinical decision-making and clinical trial design in stroke neurorehabilitation.


Asunto(s)
Electroencefalografía , Plasticidad Neuronal , Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Plasticidad Neuronal/fisiología , Accidente Cerebrovascular/fisiopatología , Recuperación de la Función/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos
8.
Stroke ; 55(7): 1895-1903, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38913796

RESUMEN

BACKGROUND: The hospital's physical environment can impact health and well-being. Patients spend most of their time in their hospital rooms. However, little experimental evidence supports specific physical design variables in these rooms, particularly for people poststroke. The study aimed to explore the influence of patient room design variables modeled in virtual reality using a controlled experimental design. METHODS: Adults within 3 years of stroke who had spent >2 nights in hospital for stroke and were able to consent were included (Melbourne, Australia). Using a factorial design, we immersed participants in 16 different virtual hospital patient rooms in both daytime and nighttime conditions, systematically varying design attributes: patient room occupancy, social connectivity, room size (spaciousness), noise (nighttime), greenery outlook (daytime). While immersed, participants rated their affect (Pick-A-Mood Scale) and preference. Mixed-effect regression analyses were used to explore participant responses to design variables in both daytime and nighttime conditions. Feasibility and safety were monitored throughout. Australian New Zealand Clinical Trials Registry, Trial ID: ACTRN12620000375954. RESULTS: Forty-four adults (median age, 67 [interquartile range, 57.3-73.8] years, 61.4% male, and a third with stroke in the prior 3-6 months) completed the study in 2019-2020. We recorded and analyzed 701 observations of affective responses (Pick-A-Mood Scale) in the daytime (686 at night) and 698 observations of preference responses in the daytime (685 nighttime) while continuously immersed in the virtual reality scenarios. Although single rooms were most preferred overall (daytime and nighttime), the relationship between affective responses differed in response to different combinations of nighttime noise, social connectivity, and greenery outlook (daytime). The virtual reality scenario intervention was feasible and safe for stroke participants. CONCLUSIONS: Immediate affective responses can be influenced by exposure to physical design variables other than room occupancy alone. Virtual reality testing of how the physical environment influences patient responses and, ultimately, outcomes could inform how we design new interventions for people recovering after stroke. REGISTRATION: URL: https://anzctr.org.au; Unique identifier: ACTRN12620000375954.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Realidad Virtual , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Habitaciones de Pacientes , Australia , Arquitectura y Construcción de Hospitales
9.
Stroke ; 55(3): 696-704, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38406850

RESUMEN

BACKGROUND: Dose response has remained a priority area in motor rehabilitation research for decades, prompting several large randomized trials and meta-analyses. These between-subjects comparisons have revealed equivocal relationships between the duration of motor practice and rehabilitation response. Prior reliance on time-consuming clinical assessments made it infeasible to capture within-subjects dose response, as tracking the dose-response trajectory of an individual requires dozens of repeated administrations. METHODS: This secondary observational cohort analysis of existing data from the gaming arms of the VIGoROUS multisite trial (Video Game Rehabilitation for Outpatient Stroke) describes the rehabilitation dose response of 80 participants with mild-moderate chronic stroke. The 3-dimensional joint position data were captured via the Kinect v2 optical sensor as participants completed a prescribed 15 hours of in-home unsupervised game-based motor practice. Kinematic dose response trajectories were fitted from hundreds to thousands of in-game repetitions for 4 separate upper extremity movements for each participant. RESULTS: Of 75 participants with sufficient data for dose-response analysis, 85% showed improved motor capacity for at least 1 movement. Dose response was bimodal; 42% required <5 hours of motor practice before reaching a plateau in movement kinematics, whereas 55% required >10 and 34% required >30 hours. We could predict with 93% accuracy whether or not an individual would ultimately respond to game-based motor practice within 5 hours of gameplay. CONCLUSIONS: Dose response varies considerably between individuals. About half of chronic stroke patients benefit from higher doses of motor practice than the current standard of care. Individualized dose-response data from motion capture rehabilitation gaming can guide clinical decision-making early on in treatment. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02631850.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Extremidad Superior , Accidente Cerebrovascular/terapia , Brazo , Movimiento/fisiología , Fenómenos Biomecánicos , Recuperación de la Función
10.
Stroke ; 55(9): 2325-2339, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39016005

RESUMEN

BACKGROUND: Visuospatial neglect is a common consequence of stroke and is characterized by impaired attention to contralesional space. Currently, the extent and time course of recovery from neglect are not clearly established. This systematic review and meta-analysis aimed to determine the recovery trajectory of poststroke neglect with standard treatment. METHODS: PsycInfo, Embase, and MEDLINE were searched for articles reporting recovery rates of neglect after stroke. Time since stroke was categorized into early (0-3 months), mid (3-6 months), and late (>6 months) recovery phases. Random-effects models for pooled prevalence were generated for each phase, and potential sources of heterogeneity were explored with metaregressions. Methodological quality of each study was assessed using the Joanna Briggs Institute checklist, with low-quality studies excluded in sensitivity analyses. RESULTS: The search captured 4130 articles including duplicates, and 111 full-text reviews were undertaken. A total of 27 studies reporting data from 839 stroke survivors with neglect were included for review. Meta-analyses indicated a recovery rate of 42% in the early phase, which increased to 53% in the mid-recovery phase. Additional recovery in the late phase was minimal, with an estimated 56% recovery rate. Heterogeneity of studies was high (I2>75%) in all 3 phases of recovery. Estimates were robust to sensitivity analyses. Metaregressions showed significantly greater recovery in studies that included patients with left-hemisphere lesions (ß=0.275, P<0.05, I2=84%). CONCLUSIONS: Most recovery from neglect occurs in the first 3 months, although additional gains can be expected up to 6 months poststroke. While a large proportion of patients recover from neglect, over 40% show persistent symptoms. Further research is needed on effective rehabilitation interventions, particularly focusing on patients most at risk of chronic visuospatial neglect. REGISTRATION: URL: https://www.crd.york.ac.uk/PROSPERO/; Unique identifier: CRD42023388763.


Asunto(s)
Trastornos de la Percepción , Recuperación de la Función , Accidente Cerebrovascular , Humanos , Trastornos de la Percepción/etiología , Trastornos de la Percepción/rehabilitación , Recuperación de la Función/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/psicología , Rehabilitación de Accidente Cerebrovascular/métodos
11.
Stroke ; 55(9): 2202-2211, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39113181

RESUMEN

BACKGROUND: Limited evidence supports the effects of short-interval high-intensity interval training (HIIT) for improving cardiorespiratory fitness (V̇O2peak) after stroke. We aimed to compare the effects of 12 weeks of short-interval HIIT versus moderate-intensity continuous training (MICT) on V̇O2peak, cardiovascular risk factors, and mobility outcomes among individuals ≥6 months poststroke. METHODS: This study was a multi-site, 12-week randomized controlled trial (NCT03614585) with an 8-week follow-up. Participants were randomized into 3 d/wk of HIIT (10×1 minute 80%-100% heart rate reserve interspersed with 1 minute 30% heart rate reserve [19 minutes]) or MICT (20-30 minutes 40%-60% heart rate reserve). Secondary outcomes of the trial, including V̇O2peak, cardiovascular risk factors (carotid-femoral pulse wave velocity, blood pressure, and waist-hip ratio), and mobility (6-minute walk test, 10 m gait speed), were reported. Linear mixed model analyses with a group×study time point interaction evaluated between-group differences. RESULTS: Of the 305 potential participants, 82 consented (mean [SD] age 64.9 [9.3] years, 32 females [39%], 1.8 [1.2] years poststroke) and were randomized to HIIT (n=42, mean [SD] baseline V̇O2peak 17.3 [5.9] mL/kg·min) or MICT (n=40, mean [SD] baseline V̇O2peak 17.2 [6.0] mL/kg·min). Participants attended 82% of visits (n=2417/2952). No adverse events occurred during the study period. A significant group×study time point interaction was found (χ2=8.46; P=0.015) for V̇O2peak at 12 weeks (mean difference, 1.81 [95% CI, 0.58-3.04]; P=0.004) whereby the HIIT group had greater gains in V̇O2peak (∆3.52 mL/kg·min [95% CI, 2.47-4.57]; P<0.001) compared with the MICT group (∆1.71 mL/kg·min [95% CI, 0.55-2.86]; P=0.001). There was no between-group difference in V̇O2peak (mean difference, 1.08 [95% CI, -0.26 to 2.42]; P=0.11) at 8-week follow-up. No group×study time point interactions were found for cardiovascular risk factors or mobility outcomes. CONCLUSIONS: Short-interval HIIT may be an effective alternative to MICT for improving V̇O2peak at 12 weeks postintervention. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT03614585.


Asunto(s)
Capacidad Cardiovascular , Entrenamiento de Intervalos de Alta Intensidad , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Persona de Mediana Edad , Entrenamiento de Intervalos de Alta Intensidad/métodos , Capacidad Cardiovascular/fisiología , Anciano , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Consumo de Oxígeno/fisiología , Frecuencia Cardíaca/fisiología , Terapia por Ejercicio/métodos
12.
Stroke ; 55(9): 2212-2220, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39016009

RESUMEN

BACKGROUND: Upper extremity (UE) motor function impairment is a major poststroke complication whose recovery remains one of the most challenging tasks in neurological rehabilitation. This study examined the efficacy and safety of the personalized neuroimaging-guided high-dose theta-burst stimulation (TBS) for poststroke UE motor function recovery. METHODS: Patients after stroke with UE motor impairment from a China rehabilitation center were randomly assigned to receive high-dose intermittent TBS (iTBS) to ipsilesional UE sensorimotor network, continuous TBS (cTBS) to contralesional UE sensorimotor network, or sham stimulation, along with conventional therapy for 3 weeks. The primary outcome was the score changes on the Fugl-Meyer assessment-UE from baseline to 1 and 3 weeks. The secondary outcomes included the response rate on Fugl-Meyer assessment-UE scores posttreatment (≥9-point improvement) and score changes in multidimensional scales measuring UE, lower extremity, and activities and participation. RESULTS: From June 2021 to June 2022, 45 participants were randomized and 43 were analyzed. The iTBS and continuous TBS groups showed significantly greater improvement in Fugl-Meyer assessment-UE (mean improvement, iTBS: 10.73 points; continuous TBS: 10.79 points) than the sham group (2.43 points) and exhibited significantly greater response rates on Fugl-Meyer assessment-UE (iTBS, 60.0%; continuous TBS, 64.3%) than the sham group (0.0%). The active groups consistently exhibited superior improvement on the other 2 UE assessments at week 3. However, only the iTBS group showed greater efficacy on 1 lower extremity assessment than the sham group at week 3. Both active groups showed significant improvements in activities and participation assessments. CONCLUSIONS: The study provides evidence for the efficacy and safety of high-dose TBS in facilitating poststroke UE rehabilitation. REGISTRATION: URL: www.chictr.org.cn; Unique identifier: ChiCTR2100047340.


Asunto(s)
Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Extremidad Superior , Humanos , Masculino , Femenino , Persona de Mediana Edad , Extremidad Superior/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos , Anciano , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Recuperación de la Función/fisiología , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Adulto
13.
Stroke ; 55(7): 1748-1757, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38860389

RESUMEN

BACKGROUND: Studies in individuals with chronic stroke indicate high-intensity training (HIT) focused on walking improves locomotor function, which may be due to repeated activation of locomotor circuits and serotonin-dependent modulation of motor output. Separate studies in animals and individuals with spinal cord injury suggest acute intermittent hypoxia (AIH) can augment the effects of locomotor interventions through similar serotonin-dependent mechanisms, although no studies have coupled AIH with HIT in individuals poststroke. The goal of this study was to evaluate the safety and efficacy of AIH+HIT versus HIT alone in individuals with chronic stroke. METHODS: This phase II double-blind randomized, crossover trial recruited individuals between 18 and 85 years old, >6 months poststroke, and self-selected speeds <1.0 m/s. Participants received up to 15 sessions of AIH for 30 minutes using 15 cycles of hypoxia (60-90 seconds; 8%-9% O2) and normoxia (30-60 seconds; 21% O2), followed by 1 hour of HIT targeting >75% heart rate reserve. The control condition received normoxia for 30 minutes before HIT. Following the first training phase, participants performed the second phase >1 month later. The primary outcomes were self-selected speed and fastest speed, a 6-minute walk test, and peak treadmill speed. A 3-way mixed-model ANOVA assessed the effects of time, training, and order of interventions. RESULTS: Of 55 individuals screened, 35 were randomized to AIH+HIT or normoxia+HIT first, and 28 individuals completed both interventions, revealing greater gains in self-selected speeds (0.14 [0.08-0.18] versus 0.05 [0.01-0.10] m/s), fastest speed (0.16 [0.10-0.21] versus 0.06 [0.02-0.10] m/s), and peak treadmill speed (0.21 [0.14-0.29] versus 0.11 [0.06-0.16] m/s) following AIH+HIT versus normoxia+HIT (P<0.01) with no order effects. Greater gains in spatiotemporal symmetry were observed with AIH+HIT, with worse outcomes for those prescribed serotonin-mediated antidepressant medications. CONCLUSIONS: AIH+HIT resulted in greater gains in locomotor function than normoxia+HIT. Subsequent phase III trials should further evaluate the efficacy of this intervention. REGISTRATION: URL: https://clinicaltrials.gov/; Unique identifier: NCT04472442.


Asunto(s)
Estudios Cruzados , Hipoxia , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Masculino , Persona de Mediana Edad , Femenino , Anciano , Rehabilitación de Accidente Cerebrovascular/métodos , Método Doble Ciego , Hipoxia/fisiopatología , Hipoxia/terapia , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Adulto , Marcha/fisiología , Enfermedad Crónica , Anciano de 80 o más Años , Resultado del Tratamiento , Terapia por Ejercicio/métodos , Entrenamiento de Intervalos de Alta Intensidad/métodos
14.
Stroke ; 55(7): 1877-1885, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38836352

RESUMEN

BACKGROUND: High-intensity therapy is recommended in current treatment guidelines for chronic poststroke aphasia. Yet, little is known about fatigue levels induced by treatment, which could interfere with rehabilitation outcomes. We analyzed fatigue experienced by people with chronic aphasia (>6 months) during high-dose interventions at 2 intensities. METHODS: A retrospective observational analysis was conducted on self-rated fatigue levels of people with chronic aphasia (N=173) collected during a previously published large randomized controlled trial of 2 treatments: constraint-induced aphasia therapy plus and multi-modality aphasia therapy. Interventions were administered at a higher intensity (30 hours over 2 weeks) or lower intensity (30 hours over 5 weeks). Participants rated their fatigue on an 11-point scale before and after each day of therapy. Data were analyzed using Bayesian ordinal multilevel models. Specifically, we considered changes in self-rated participant fatigue across a therapy day and over the intervention period. RESULTS: Data from 144 participants was analyzed. Participants were English speakers from Australia or New Zealand (mean age, 62 [range, 18-88] years) with 102 men and 42 women. Most had mild (n=115) or moderate (n=52) poststroke aphasia. Median ratings of the level of fatigue by people with aphasia were low (1 on a 0-10-point scale) at the beginning of the day. Ratings increased slightly (+1.0) each day after intervention, with marginally lower increases in the lower intensity schedule. There was no evidence of accumulating fatigue over the 2- or 5-week interventions. CONCLUSIONS: Findings suggest that intensive intervention was not associated with large increases in fatigue for people with chronic aphasia enrolled in the COMPARE trial (Constraint-Induced or Multimodality Personalised Aphasia Rehabilitation). Fatigue did not change across the course of the intervention. This study provides evidence that intensive treatment was minimally fatiguing for stroke survivors with chronic aphasia, suggesting that fatigue is not a barrier to high-intensity treatment.


Asunto(s)
Afasia , Fatiga , Humanos , Afasia/etiología , Afasia/rehabilitación , Afasia/terapia , Femenino , Masculino , Persona de Mediana Edad , Anciano , Fatiga/etiología , Fatiga/terapia , Adulto , Anciano de 80 o más Años , Estudios Retrospectivos , Enfermedad Crónica , Accidente Cerebrovascular/complicaciones , Adolescente , Adulto Joven , Rehabilitación de Accidente Cerebrovascular/métodos , Autoinforme
15.
J Neurophysiol ; 131(6): 1286-1298, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38716555

RESUMEN

Transcranial direct current stimulation (tDCS) may facilitate neuroplasticity but with a limited effect when administered while patients with stroke are at rest. Muscle-computer interface (MCI) training is a promising approach for training patients with stroke even if they cannot produce overt movements. However, using tDCS to enhance MCI training has not been investigated. We combined bihemispheric tDCS with MCI training of the paretic wrist and examined the effect of this intervention in patients with chronic stroke. A crossover, double-blind, randomized trial was conducted. Twenty-six patients with chronic stroke performed MCI wrist training for three consecutive days at home while receiving either real tDCS or sham tDCS in counterbalanced order and separated by at least 8 mo. The primary outcome measure was the Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE) that was measured 1 wk before training, on the first training day, on the last training day, and 1 wk after training. There was neither a significant difference in the baseline FMA-UE score between groups nor between intervention periods. Patients improved 3.9 ± 0.6 points in FMA-UE score when receiving real tDCS, and 1.0 ± 0.7 points when receiving sham tDCS (P = 0.003). In addition, patients also showed continuous improvement in their motor control of the MCI tasks over the training days. Our study showed that the training paradigm could lead to functional improvement in patients with chronic stroke. We argue that appropriate MCI training in combination with bihemispheric tDCS could be a useful adjuvant for neurorehabilitation in patients with stroke.NEW & NOTEWORTHY Bihemispheric tDCS combined with a novel MCI training for motor control of wrist extensor can improve upper limb function especially a training-specific effect on the wrist movement in patients with chronic stroke. The training regimen can be personalized with adjustments made daily to accommodate the functional change throughout the intervention. This demonstrates that bihemispheric tDCS with MCI training could complement conventional poststroke neurorehabilitation.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Persona de Mediana Edad , Anciano , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Método Doble Ciego , Extremidad Superior/fisiopatología , Enfermedad Crónica , Estudios Cruzados , Adulto , Recuperación de la Función/fisiología
16.
J Neurophysiol ; 132(5): 1348-1358, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39292874

RESUMEN

Reduced propulsion of the paretic leg contributes to impaired walking in people poststroke. The goal of this study was to determine whether phasic electrical stimulation to the paretic gastrocnemius muscle combined with resistance applied to the nonparetic leg during swing phase while walking would enhance muscle activation of the paretic gastrocnemius and propulsive force of the paretic leg. Fifteen individuals who had a stroke visited the lab once to complete two experimental sessions (i.e., crossover design; session order randomized). Each session consisted of 1) treadmill walking with either "motor stimulation and swing resistance" or "swing resistance only" (10-min walking: 1-min baseline, 7-min adaptation to intervention, and 2-min postadaptation) and 2) instrumented treadmill walking before and after treadmill walking. Participants showed enhanced muscle activation of the paretic gastrocnemius (P = 0.03) and improved anteroposterior ground reaction force of the paretic leg (P = 0.01) immediately after the treadmill walking with "motor stimulation and swing resistance," whereas no improvements after the walking with "swing resistance only." Those enhanced gastrocnemius muscle activation (P = 0.02) and improved ground reaction force (P = 0.03) were retained until the late postadaptation period and 10 min after treadmill walking, respectively. Walking with "motor stimulation and swing resistance" may enhance forced use of the paretic leg and improve propulsive force of the paretic leg. Applying phasic electrical stimulation to the paretic gastrocnemius muscle and swing resistance to the nonparetic leg during walking can be used as a novel intervention strategy to improve motor control of the paretic leg and walking in people poststroke.NEW & NOTEWORTHY Applying targeted motor stimulation to the paretic calf muscle and swing resistance to the nonparetic leg during walking induced significant enhancement in muscle activation of the paretic gastrocnemius and anterior-posterior ground reaction force of the paretic leg, whereas no enhancements were observed after walking with swing resistance only. Furthermore, the enhanced gastrocnemius muscle activation and ground reaction force of the paretic leg were partially retained at the late postadaptation period and 10 min after treadmill walking.


Asunto(s)
Pierna , Músculo Esquelético , Accidente Cerebrovascular , Caminata , Humanos , Músculo Esquelético/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Caminata/fisiología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Pierna/fisiopatología , Anciano , Paresia/fisiopatología , Paresia/etiología , Paresia/rehabilitación , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto , Terapia por Estimulación Eléctrica
17.
Eur J Neurosci ; 59(7): 1789-1818, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221768

RESUMEN

Stroke is one of the leading causes of adult disability affecting millions of people worldwide. Post-stroke cognitive and motor impairments diminish quality of life and functional independence. There is an increased risk of having a second stroke and developing secondary conditions with long-term social and economic impacts. With increasing number of stroke incidents, shortage of medical professionals and limited budgets, health services are struggling to provide a care that can break the vicious cycle of stroke. Effective post-stroke recovery hinges on holistic, integrative and personalized care starting from improved diagnosis and treatment in clinics to continuous rehabilitation and support in the community. To improve stroke care pathways, there have been growing efforts in discovering biomarkers that can provide valuable insights into the neural, physiological and biomechanical consequences of stroke and how patients respond to new interventions. In this review paper, we aim to summarize recent biomarker discovery research focusing on three modalities (brain imaging, blood sampling and gait assessments), look at some established and forthcoming biomarkers, and discuss their usefulness and complementarity within the context of comprehensive stroke care. We also emphasize the importance of biomarker guided personalized interventions to enhance stroke treatment and post-stroke recovery.


Asunto(s)
Accidente Cerebrovascular Isquémico , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Adulto , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Calidad de Vida , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Biomarcadores
18.
Eur J Neurosci ; 60(6): 5249-5265, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39143724

RESUMEN

Motor interference, where new skill acquisition disrupts the performance of a previously learned skill, is a critical yet underexplored factor in gait rehabilitation post-stroke. This study investigates the interference effects of two different practice schedules, applying interleaved (ABA condition) and intermittent (A-A condition) pulling force to the pelvis during treadmill walking, on lateral pelvis shifting towards the paretic leg in individuals with stroke. Task A involved applying resistive pelvis force (pulling towards the non-paretic side), and Task B applied assistive force (pulling towards the paretic side) at the stance phase of the paretic leg during walking. Sixteen individuals with chronic stroke were tested for gait pattern changes, including lateral pelvis shifting and spatiotemporal gait parameters, and neurophysiological changes, including muscle activity in the paretic leg and beta band absolute power in the lesioned cortical areas. A-A condition demonstrated increased lateral pelvis shifting towards the paretic side, extended paretic stance time and longer non-paretic step length after force release while ABA condition did not show any changes. These changes in gait pattern after A-A condition were accompanied by increased muscle activities of the ankle plantarflexors, and hip adductors/abductors. A-A condition demonstrated greater changes in beta band power in the sensorimotor regions compared to ABA condition. These findings suggest that while walking practice with external force to the pelvis can improve lateral pelvis shifting towards the paretic leg post-stroke, practicing a new pelvis shifting task in close succession may hinder the performance of a previously obtained lateral pelvis shifting pattern during walking.


Asunto(s)
Pelvis , Accidente Cerebrovascular , Caminata , Humanos , Masculino , Femenino , Persona de Mediana Edad , Caminata/fisiología , Anciano , Accidente Cerebrovascular/fisiopatología , Pelvis/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos , Paresia/fisiopatología , Paresia/etiología , Pierna/fisiopatología , Músculo Esquelético/fisiopatología , Adulto , Marcha/fisiología , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/etiología
19.
Hum Brain Mapp ; 45(1): e26541, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38053448

RESUMEN

Deficits in proprioception, the knowledge of limb position and movement in the absence of vision, occur in ~50% of all strokes; however, our lack of knowledge of the neurological mechanisms of these deficits diminishes the effectiveness of rehabilitation and prolongs recovery. We performed resting-state functional magnetic resonance imaging (fMRI) on stroke patients to determine functional brain networks that exhibited changes in connectivity in association with proprioception deficits determined by a Kinarm robotic exoskeleton assessment. Thirty stroke participants were assessed for proprioceptive impairments using a Kinarm robot and underwent resting-state fMRI at 1 month post-stroke. Age-matched healthy control (n = 30) fMRI data were also examined and compared to stroke data in terms of the functional connectivity of brain regions associated with proprioception. Stroke patients exhibited reduced connectivity of the supplementary motor area and the supramarginal gyrus, relative to controls. Functional connectivity of these regions plus primary somatosensory cortex and parietal opercular area was significantly associated with proprioceptive function. The parietal lobe of the lesioned hemisphere is a significant node for proprioception after stroke. Assessment of functional connectivity of this region after stroke may assist with prognostication of recovery. This study also provides potential targets for therapeutic neurostimulation to aid in stroke recovery.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Propiocepción/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Encéfalo/diagnóstico por imagen , Lóbulo Parietal , Hipoestesia , Imagen por Resonancia Magnética
20.
Cerebellum ; 23(4): 1678-1696, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38280142

RESUMEN

This study aimed to investigate the potential therapeutic effects of cerebellar transcranial magnetic stimulation (TMS) on balance and limb motor impairments in stroke patients. A meta-analysis of randomized controlled trials was conducted to assess the effects of cerebellar TMS on balance and motor impairments in stroke patients. Additionally, an activation likelihood estimation (ALE) meta-analysis was performed on resting-state functional magnetic resonance imaging (fMRI) studies to compare spontaneous neural activity differences between stroke patients and healthy controls using measures including the amplitude of low frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo). The analysis included 10 cerebellar TMS studies and 18 fMRI studies. Cerebellar TMS treatment demonstrated significant improvements in the Berg Balance Scale score (p < 0.0001) and the Fugl-Meyer Assessment lower extremity score (p < 0.0001) compared to the control group in stroke patients. Additionally, spontaneous neural activity alterations were identified in motor-related regions after stroke, including the precentral gyrus, putamen, thalamus, and paracentral lobule. Cerebellar TMS shows promise as a therapeutic intervention to enhance balance and lower limb motor function in stroke patients. It is easy for clinical application and addresses the limitations of insufficient direct stimulation depth on the leg area of the cortex. However, further research combining neuroimaging outcomes with clinical measurements is necessary to validate these findings.


Asunto(s)
Cerebelo , Imagen por Resonancia Magnética , Equilibrio Postural , Ensayos Clínicos Controlados Aleatorios como Asunto , Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Imagen por Resonancia Magnética/métodos , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/fisiopatología , Equilibrio Postural/fisiología , Descanso , Rehabilitación de Accidente Cerebrovascular/métodos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA