Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(32): e2310079121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074271

RESUMEN

California agriculture will undergo significant transformations over the next few decades in response to climate extremes, environmental regulation and policy encouraging environmental justice, and economic pressures that have long driven agricultural changes. With several local climates suited to a variety of crops, periodically abundant nearby precipitation, and public investments that facilitated abundant low-priced irrigation water, California hosts one of the most diverse and productive agroecosystems in the world. California farms supply nearly half of the high-nutrient fruit, tree nut, and vegetable production in the United States. Climate change impacts on productivity and profitability of California agriculture are increasing and forebode problems for standard agricultural practices, especially water use norms. We highlight many challenges California agriculture confronts under climate change through the direct and indirect impacts on the biophysical conditions and ecosystem services that drive adaptations in farm practices and water accessibility and availability. In the face of clear conflicts among competing interests, we consider ongoing and potential sustainable and equitable solutions, with particular attention to how technology and policy can facilitate progress.


Asunto(s)
Agricultura , Cambio Climático , California , Agricultura/métodos , Ecosistema , Abastecimiento de Agua , Productos Agrícolas/crecimiento & desarrollo , Riego Agrícola , Agua
3.
BMC Plant Biol ; 24(1): 237, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566021

RESUMEN

BACKGROUND: Onions are economically and nutritionally important vegetable crops. Despite advances in technology and acreage, Indian onion growers face challenges in realizing their full productivity potential. This study examines the technical efficiency of onion growers, the factors influencing it, and the constraints faced by those adopting drip irrigation in the Ghod river basin of western Maharashtra. A sample of 480 farmers including those practicing drip irrigation and those not practicing it, was selected from Junnar, Shirur, Parner, and Shrigonda blocks of the basin. The primary data was collected through semi-structured interviews. Analytical tools such as the Cobb-Douglas production function (represents technological relationship between multiple inputs and the resulting output), a single-stage stochastic frontier model, the Tobit model, and descriptive statistics were used to assess the technical efficiency of onion production at the farm level. RESULTS: According to the maximum likelihood estimates of the stochastic frontier analysis, drip adopters exhibited a mean technical efficiency of 92%, while for non-adopters it was 65%. It indicates that the use of drip irrigation technology is associated with higher technical efficiency. The association of technical efficiency and socio-economic characters of households showed that education, extension contacts, social participation, and use of information sources had a positive influence on technical efficiency, while family size had a negative influence on the drip irrigation adopters. For non-drip adopters, significant positive effects were observed for landholding, extension contact, and information source use. The major constraints faced by drip system adopters included a lack of knowledge about the proper operating techniques for drip systems and the cost of maintenance. CONCLUSION: The differences with inputs associated with two irrigation methods showed that the response of inputs to increase onion yield is greater for farmers who use drip irrigation than for farmers who do not, and are a result of the large differences in the technical efficiencies. These inefficiencies and other limitations following the introduction of drip irrigation, such as lack of knowledge about the proper operations, need to be addressed through tailored training for farmers and further interventions.


Asunto(s)
Riego Agrícola , Cebollas , Riego Agrícola/métodos , India , Granjas , Productos Agrícolas
4.
BMC Plant Biol ; 24(1): 317, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654169

RESUMEN

BACKGROUND: Fennel essential oils are fragrance compounds used in food and pharmaceutical sectors. One of the major impediments to expansion of fennel farming in Egypt's reclamation areas is saline water. Titanium dioxide (TiO2) or TiO2 nano particles (TiO2NP) can be utilized to boost the yield of aromatic plants cultivated under saline irrigation water. Saline water, particularly which contains sodium chloride can harm fennel plant; consequently, it was predicted that fennel production would fail in Egypt's reclaimed area, where the primary source of irrigation is groundwater consisting sodium chloride. This study sought to help fennel respond to sodium chloride by applying Ti forms to their leaves in order to reduce the detrimental effects of sodium chloride on them for expanding their production in the newly reclamation areas as a natural source of essential oil. Ti forms were applied as foliar application at 0, 0.1, 0.2 TiO2, 0.1 TiO2NP, and 0.2 TiO2NP, mM under irrigation with fresh water (0.4 dS m-1), or saline water (51.3 mM or 4.7 dS m-1). RESULTS: Plants exposed to 0.1 mM TiO2NP under fresh water resulted in the maximum values of morphological characters, estragole, oxygenated monoterpenes and photosynthetic pigments; while those subjected to 0.1 mM TiO2NP under saline water gave the greatest values of essential oil, proline, antioxidant enzymes and phenols. The greatest amounts of soluble sugars were recorded with 0.2 mM TiO2NP irrigated with saline water. Plants subjected to 0 mM TiO2 under saline water produced the greatest values of flavonoids, hydrogen peroxide and malondialdehyde. CONCLUSION: To mitigate the negative effects of salty irrigation water on fennel plant production, TiO2NP application is suggested as a potential strategy.


Asunto(s)
Riego Agrícola , Foeniculum , Hojas de la Planta , Titanio , Riego Agrícola/métodos , Hojas de la Planta/efectos de los fármacos , Foeniculum/química , Nanopartículas , Aguas Salinas , Aceites Volátiles
5.
BMC Plant Biol ; 24(1): 548, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872106

RESUMEN

Enhancing wheat productivity by implementing a comprehensive approach that combines irrigation, nutrition, and organic amendments shows potential for collectively enhancing crop performance. This study examined the individual and combined effects of using irrigation systems (IS), foliar potassium bicarbonate (PBR) application, and compost application methods (CM) on nine traits related to the growth, physiology, and yield of the Giza-171 wheat cultivar. Analysis of variance revealed significant (P ≤ 0.05) main effects of IS, PBR, and CM on wheat growth, physiology, and yield traits over the two growing seasons of the study. Drip irrigation resulted in a 16% increase in plant height, leaf area index, crop growth rate, yield components, and grain yield compared to spray irrigation. Additionally, the application of foliar PBR at a concentration of 0.08 g/L boosted these parameters by up to 22% compared to the control. Furthermore, the application of compost using the role method resulted in enhanced wheat performance compared to the treatment including mix application. Importantly, the combined analysis revealed that the three-way interaction between the three factors had a significant effect (P ≤ 0.05) on all the studied traits, with drip irrigation at 0.08 g PBR rate and role compost application method (referred as Drip_0.08g_Role) resulting in the best performance across all traits, while sprinkle irrigation without PBR and conventional mixed compost method (referred as sprinkle_CK_Mix) produced the poorest results. This highlights the potential to synergistically improve wheat performance through optimized agronomic inputs.


Asunto(s)
Riego Agrícola , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Riego Agrícola/métodos , Fertilizantes , Bicarbonatos/metabolismo , Compostaje/métodos , Compuestos de Potasio , Suelo/química
6.
BMC Plant Biol ; 24(1): 775, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143521

RESUMEN

BACKGROUND: To optimize irrigation water use and productivity, understanding the interactions between plants, irrigation techniques, and fertilization practices is crucial. Therefore, the experiment aims to assess the effectiveness of two application methods of potassium humate combined with chelated zinc under partial root-zone drip irrigation techniques on maize nutrient uptake, yield, and irrigation water use efficiency across two irrigation levels. METHODS: Open-field experiments were carried out in two summer seasons of 2021 and 2022 under alternate and fixed partial root-zone drip irrigation techniques to investigate their impacts at two irrigation levels and applied foliar and soil applications of potassium humate or chelated zinc in a sole and combinations on maize. RESULTS: Deficit irrigation significantly increased hydrogen peroxide levels and decreased proline, antioxidant enzymes, carbohydrate, chlorophyll (a + b), and nutrient uptake in both partial root-zone techniques. The implementation of combined soil application of potassium humate and chelated zinc under drought conditions on maize led to varying impacts on antioxidant enzymes and nutritional status, depending on the type of partial root-zone technique. Meanwhile, the results showed that fixed partial root-zone irrigation diminished the negative effects of drought stress by enhancing phosphorus uptake (53.8%), potassium uptake (59.2%), proline (74.4%) and catalase (75%); compared to the control. These enhancements may contribute to improving the defense system of maize plants in such conditions. On the other hand, the same previous treatments under alternate partial root zone modified the defense mechanism of plants and improved the contents of peroxidase, superoxide dismutase, and the uptake of magnesium, zinc, and iron by 81.3%, 82.3%, 85.1%, 56.9%, and 80.2%, respectively. CONCLUSIONS: Adopting 75% of the irrigation requirements and treating maize plants with the soil application of 3 g l-1 potassium humate combined with 1.25 kg ha-1 chelated zinc under alternate partial root-zone technique, resulted in the maximum root length, leaf water content, chlorophyll content, yield, and irrigation water use efficiency.


Asunto(s)
Riego Agrícola , Raíces de Plantas , Potasio , Zea mays , Zinc , Zea mays/metabolismo , Riego Agrícola/métodos , Zinc/metabolismo , Potasio/metabolismo , Raíces de Plantas/metabolismo , Agua/metabolismo , Clima Desértico , Suelo/química , Sequías , Fertilizantes
7.
BMC Plant Biol ; 24(1): 754, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107692

RESUMEN

BACKGROUND: This study aimed to evaluate the suitability of using drain water as a source of irrigation and its effects along with salicylic acid on morphological, anatomical, physico-chemical as well as yield attributes of potato. For this study, potato tubers were grown in pots and irrigated with different concentrations of drain water. Salicylic acid treatments vis. 0, 0.5 and 1.0 mM were applied foliarly. Pre- and post-harvest analysis was carried out to determine different attributes of soil, water and plants after 60 days. RESULTS: The growth of potato plant was increased as the concentration of SA increased through increasing shoot length, fresh/dry weight and tuber number/plant. In this research work, plant respond to overcome metal stresses by up regulating antioxidant defense system such as, peroxidase, catalase and superoxide dismutase) by application of highest treatment of SA when irrigated with 6% drain water. Plants accumulated the highest concentrations of Cd, Cr, and Pb in the leaves when treated with 1 mM of SA, compared to other plant parts. It was observed that photosynthetic pigment enhanced in 6% drain water treated plants when applied with 1mM SA as compared to control. An increase in epidermis and cortical cell thickness, as well as stomatal closure, was observed, helping to maintain water loss under stress conditions. CONCLUSIONS: According to these results, it can be suggested that SA is potent signaling molecule can play an essential role in maintaining potato growth when irrigated with drain water containing heavy metals through stimulating metal up take and up regulation of antioxidant enzymes.


Asunto(s)
Riego Agrícola , Hojas de la Planta , Ácido Salicílico , Solanum tuberosum , Aguas Residuales , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/crecimiento & desarrollo , Ácido Salicílico/farmacología , Hojas de la Planta/efectos de los fármacos , Riego Agrícola/métodos , Tubérculos de la Planta/efectos de los fármacos , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/anatomía & histología , Antioxidantes/metabolismo
8.
BMC Plant Biol ; 24(1): 759, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118015

RESUMEN

BACKGROUND: Populus spp. is a crucial fast-growing and productive tree species extensively cultivated in the mid-latitude plains of the world. However, the impact of intensive cultivation management on gene expression in plantation remains largely unexplored. RESULTS: Precision water and fertilizer-intensive management substantially increased key enzyme activities of nitrogen transport, assimilation, and photosynthesis (1.12-2.63 times than CK) in Populus × euramericana 'Neva' plantation. Meanwhile, this management approach had a significant regulatory effect on the gene expression of poplar plantations. 1554 differential expression genes (DEGs)were identified in drip irrigation (ND) compared with conventional irrigation. Relative to ND, 2761-4116 DEGs, predominantly up-regulated, were identified under three drip fertilization combinations, among which 202 DEGs were mainly regulated by fertilization. Moreover, drip irrigation reduced the expression of cell wall synthesis-related genes to reduce unnecessary water transport. Precision drip and fertilizer-intensive management promotes the synergistic regulation of carbon and nitrogen metabolism and up-regulates the expression of major genes in nitrogen transport and assimilation processes (5 DEGs), photosynthesis (15 DEGs), and plant hormone signal transduction (11 DEGs). The incorporation of trace elements further enhanced the up-regulation of secondary metabolic process genes. In addition, the co-expression network identified nine hub genes regulated by precision water and fertilizer-intensive management, suggesting a pivotal role in regulating the growth of poplar. CONCLUSION: Precision water and fertilizer-intensive management demonstrated the ability to regulate the expression of key genes and transcription factor genes involved in carbon and nitrogen metabolism pathways, plant hormone signal transduction, and enhance the activity of key enzymes involved in related processes. This regulation facilitated nitrogen absorption and utilization, and photosynthetic abilities such as light capture, light transport, and electron transport, which faintly synergistically regulate the growth of poplar plantations. These results provide a reference for proposing highly efficient precision intensive management to optimize the expression of target genes.


Asunto(s)
Fertilizantes , Regulación de la Expresión Génica de las Plantas , Populus , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , RNA-Seq , Riego Agrícola , Nitrógeno/metabolismo , Fotosíntesis/genética , Agua/metabolismo , Transcriptoma
9.
BMC Plant Biol ; 24(1): 356, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724950

RESUMEN

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Thus, the research was carried out to assess the impact of biochar treatment on the morphological and physiological characteristics and production of Solanum lycopersicum in greenhouses exposed to drought and saline stresses. The study was structured as a three-factorial in split-split-plot design. There were 16 treatments across three variables: (i) water quality, with freshwater and saline water, with electrical conductivities of 0.9 and 2.4 dS m- 1, respectively; (ii) irrigation level, with 40%, 60%, 80%, and 100% of total evapotranspiration (ETC); (iii) and biochar application, with the addition of biochar at a 3% dosage by (w/w) (BC3%), and a control (BC0%). The findings demonstrated that salt and water deficiency hurt physiological, morphological, and yield characteristics. Conversely, the biochar addition enhanced all characteristics. Growth-related parameters, such as plant height, stem diameter, leaf area, and dry and wet weight, and leaf gas exchange attributes, such rate of transpiration and photosynthesis, conductivity, as well as leaf relative water content were decreased by drought and salt stresses, especially when the irrigation was 60% ETc or 40% ETc. The biochar addition resulted in a substantial enhancement in vegetative growth-related parameters, physiological characteristics, efficiency of water use, yield, as well as reduced proline levels. Tomato yield enhanced by 4%, 16%, 8%, and 3% when irrigation with freshwater at different levels of water deficit (100% ETc, 80% ETc, 60% ETc, and 40% ETc) than control (BC0%). Overall, the use of biochar (3%) combined with freshwater shows the potential to enhance morpho-physiological characteristics, support the development of tomato plants, and improve yield with higher WUE in semi-arid and arid areas.


Asunto(s)
Carbón Orgánico , Sequías , Estrés Salino , Solanum lycopersicum , Agua , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Carbón Orgánico/farmacología , Agua/metabolismo , Riego Agrícola , Fotosíntesis/efectos de los fármacos
10.
Plant Cell Environ ; 47(8): 3147-3165, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38693776

RESUMEN

Partial root-zone drying irrigation (PRD) can improve water-use efficiency (WUE) without reductions in photosynthesis; however, the mechanism by which this is attained is unclear. To amend that, PRD conditions were simulated by polyethylene glycol 6000 in a root-splitting system and the effects of PRD on cotton growth were studied. Results showed that PRD decreased stomatal conductance (gs) but increased mesophyll conductance (gm). Due to the contrasting effects on gs and gm, net photosynthetic rate (AN) remained unaffected, while the enhanced gm/gs ratio facilitated a larger intrinsic WUE. Further analyses indicated that PRD-induced reduction of gs was related to decreased stomatal size and stomatal pore area in adaxial and abaxial surface which was ascribed to lower pore length and width. PRD-induced variation of gm was ascribed to the reduced liquid-phase resistance, due to increases in chloroplast area facing to intercellular airspaces and the ratio of chloroplast surface area to total mesophyll cell area exposed to intercellular airspaces, as well as to decreases in the distance between cell wall and chloroplast, and between adjacent chloroplasts. The above results demonstrate that PRD, through alterations to stomatal and mesophyll structures, decoupled gs and gm responses, which ultimately increased intrinsic WUE and maintained AN.


Asunto(s)
Riego Agrícola , Gossypium , Células del Mesófilo , Fotosíntesis , Hojas de la Planta , Raíces de Plantas , Estomas de Plantas , Agua , Gossypium/fisiología , Gossypium/metabolismo , Estomas de Plantas/fisiología , Células del Mesófilo/metabolismo , Células del Mesófilo/fisiología , Agua/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Transpiración de Plantas/fisiología , Cloroplastos/metabolismo , Desecación
11.
J Exp Bot ; 75(10): 3141-3152, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38375924

RESUMEN

Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological versus hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Scots pine (Pinus sylvestris) morpho-anatomical traits (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation (Ψ50), specific hydraulic conductivity (Ks), and tree water deficit) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased tree water deficit during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and hence the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in its hydraulic system. While sparser canopies reduce water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.


Asunto(s)
Aclimatación , Bosques , Pinus sylvestris , Agua , Pinus sylvestris/fisiología , Pinus sylvestris/anatomía & histología , Pinus sylvestris/crecimiento & desarrollo , Agua/metabolismo , Agua/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Riego Agrícola , Sequías , Árboles/fisiología , Árboles/anatomía & histología
12.
MMWR Morb Mortal Wkly Rep ; 73(18): 411-416, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722798

RESUMEN

During July-September 2023, an outbreak of Shiga toxin-producing Escherichia coli O157:H7 illness among children in city A, Utah, caused 13 confirmed illnesses; seven patients were hospitalized, including two with hemolytic uremic syndrome. Local, state, and federal public health partners investigating the outbreak linked the illnesses to untreated, pressurized, municipal irrigation water (UPMIW) exposure in city A; 12 of 13 ill children reported playing in or drinking UPMIW. Clinical isolates were genetically highly related to one another and to environmental isolates from multiple locations within city A's UPMIW system. Microbial source tracking, a method to indicate possible contamination sources, identified birds and ruminants as potential sources of fecal contamination of UPMIW. Public health and city A officials issued multiple press releases regarding the outbreak reminding residents that UPMIW is not intended for drinking or recreation. Public education and UPMIW management and operations interventions, including assessing and mitigating potential contamination sources, covering UPMIW sources and reservoirs, indicating UPMIW lines and spigots with a designated color, and providing conspicuous signage to communicate risk and intended use might help prevent future UPMIW-associated illnesses.


Asunto(s)
Brotes de Enfermedades , Infecciones por Escherichia coli , Escherichia coli O157 , Humanos , Utah/epidemiología , Preescolar , Escherichia coli O157/aislamiento & purificación , Niño , Femenino , Masculino , Infecciones por Escherichia coli/epidemiología , Lactante , Adolescente , Riego Agrícola , Microbiología del Agua , Escherichia coli Shiga-Toxigénica/aislamiento & purificación
13.
Environ Sci Technol ; 58(28): 12653-12663, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38916402

RESUMEN

Geogenic arsenic (As) in groundwater is widespread, affecting drinking water and irrigation supplies globally, with food security and safety concerns on the rise. Here, we present push-pull tests that demonstrate field-scale As immobilization through the injection of small amounts of ferrous iron (Fe) and nitrate, two readily available agricultural fertilizers. Such injections into an aquifer with As-rich (200 ± 52 µg/L) reducing groundwater led to the formation of a regenerable As reactive filter in situ, producing 15 m3 of groundwater meeting the irrigation water quality standard of 50 µg/L. Concurrently, sediment magnetic properties were markedly enhanced around the well screen, pointing to neo-formed magnetite-like minerals. A reactive transport modeling approach was used to quantitatively evaluate the experimental observations and assess potential strategies for larger-scale implementation. The modeling results demonstrate that As removal was primarily achieved by adsorption onto neo-formed minerals and that an increased adsorption site density coincides with the finer-grained textures of the target aquifer. Up-scaled model simulations with 80-fold more Fe-nitrate reactants suggest that enough As-safe water can be produced to irrigate 1000 m2 of arid land for one season of water-intense rice cultivation at a low cost without causing undue contamination in surface soils that threatens agricultural sustainability.


Asunto(s)
Riego Agrícola , Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/química , Hierro/química , Nitratos
14.
Environ Sci Technol ; 58(32): 14421-14438, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39101763

RESUMEN

Escherichia coli, both commensal and pathogenic, can colonize plants and persist in various environments. It indicates fecal contamination in water and food and serves as a marker of antimicrobial resistance. In this context, 61 extended-spectrum ß-lactamase (ESBL)-producing E. coli from irrigation water and fresh produce from previous studies were characterized using whole genome sequencing (Illumina MiSeq). The Center for Genomic Epidemiology and Galaxy platforms were used to determine antimicrobial resistance genes, virulence genes, plasmid typing, mobile genetic elements, multilocus sequence typing (MLST), and pathogenicity prediction. In total, 19 known MLST groups were detected among the 61 isolates. Phylogroup B1 (ST58) and Phylogroup E (ST9583) were the most common sequence types. The six ST10 (serotype O101:H9) isolates carried the most resistance genes, spanning eight antibiotic classes. Overall, 95.1% of the isolates carried resistance genes from three or more classes. The blaCTX-M-1, blaCTX-M-14, and blaCTX-M-15 ESBL genes were associated with mobile genetic elements, and all of the E. coli isolates showed a >90% predicted probability of being a human pathogen. This study provided novel genomic information on environmental multidrug-resistant ESBL-producing E. coli from fresh produce and irrigation water, highlighting the environment as a reservoir for multidrug-resistant strains and emphasizing the need for ongoing pathogen surveillance within a One Health context.


Asunto(s)
Escherichia coli , beta-Lactamasas , Escherichia coli/genética , beta-Lactamasas/genética , Sudáfrica , Riego Agrícola , Estudios Transversales , Tipificación de Secuencias Multilocus , Genómica , Microbiología del Agua
15.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38632044

RESUMEN

AIM: To evaluate the microbiological safety, potential multidrug-resistant bacterial presence and genetic relatedness (DNA fingerprints) of Escherichia coli isolated from the water-soil-plant nexus on highly diverse fresh produce smallholder farms. METHODS AND RESULTS: Irrigation water (n = 44), soil (n = 85), and fresh produce (n = 95) samples from six smallholder farms with different production systems were analysed for hygiene indicator bacterial counts and the presence of shigatoxigenic E. coli and Salmonella spp. using standard microbiological methods. Identities of isolates were confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and the genetic relatedness of the E. coli isolates determined using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) analysis. Irrigation water E. coli levels ranged between 0 and 3.45 log MPN/100 ml-1 with five farms having acceptable levels according to the World Health Organization limit (3 log MPN/100 ml-1). Fresh produce samples on four farms (n = 65) harboured E. coli at low levels (<1 log CFU/g-1) except for one sample from kale, spring onion, green pepper, onion, and two tomato samples, which exceeded international acceptable limits (100 CFU/g-1). Only one baby carrot fresh produce sample tested positive for Salmonella spp. Of the 224 samples, E. coli isolates were identified in 40% (n = 90) of all water, soil, and fresh produce types after enrichment. Additionally, the DNA fingerprints of E. coli isolates from the water-soil-plant nexus of each respective farm clustered together at high similarity values (>90%), with all phenotypically characterized as multidrug-resistant. CONCLUSIONS: The clustering of E. coli isolated throughout the water-soil-plant nexus, implicated irrigation water in fresh produce contamination. Highlighting the importance of complying with irrigation water microbiological quality guidelines to limit the spread of potential foodborne pathogens throughout the fresh produce supply chain.


Asunto(s)
Riego Agrícola , Escherichia coli , Granjas , Microbiología del Suelo , Microbiología del Agua , Escherichia coli/aislamiento & purificación , Escherichia coli/genética , Salmonella/aislamiento & purificación , Salmonella/genética , Verduras/microbiología , Microbiología de Alimentos
16.
Environ Res ; 255: 119138, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750999

RESUMEN

The application of organic amendments is one way to manage low water irrigation in paddy soils. In this 60-day greenhouse pot experiment involving paddy soil undergoing drying-rewetting cycles, we examined the effects of two organic amendments: azo-compost with a low carbon to phosphorus ratio (C:P) of 40 and rice straw with a high C:P ratio of 202. Both were applied at rates of 1.5% of soil weight (w/w). The investigation focused on changes in certain soil biochemical characteristics related to C and P in the rice rhizosphere, as well as rice plant characteristics. The irrigation regimes applied in this study included constant soil moisture in a waterlogged state (130% water holding capacity (WHC)), mild drying-rewetting (from 130 to 100% WHC), and severe drying-rewetting (from 130 to 70% WHC). The results indicated that the application of amendments was effective in severe drying-rewetting irrigation regimes on soil characteristics. Drying-rewetting decreased soil respiration rate (by 60%), microbial biomass carbon (by 70%), C:P ratio (by 12%), soil organic P (by 16%), shoot P concentration (by 7%), and rice shoot biomass (by 30%). However, organic amendments increased soil respiration rate (by 8 times), soil microbial biomass C (51%), total C (TC) (53%), dissolved organic carbon (3 times), soil available P (AP) (100%), soil organic P (63%), microbial biomass P (4.5 times), and shoot P concentration (21%). The highest significant correlation was observed between dissolved organic carbon and total C (r= 0.89**). Organic amendments also increased P uptake by the rice plant in the order: azo-compost > rice straw > control treatments, respectively, and eliminated the undesirable effect of mild drying-rewetting irrigation regime on rice plant biomass. Overall, using suitable organic amendments proves promising for enhancing soil properties and rice growth under drying-rewetting conditions, highlighting the interdependence of P and C biochemical changes in the rhizosphere during the rice vegetative stage.


Asunto(s)
Riego Agrícola , Oryza , Suelo , Oryza/crecimiento & desarrollo , Riego Agrícola/métodos , Suelo/química , Carbono/análisis , Fósforo/análisis , Agua , Biomasa , Microbiología del Suelo
17.
Environ Res ; 252(Pt 3): 118693, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537742

RESUMEN

Soil nitrogen (N) transformation processes, encompassing denitrification, anaerobic ammonium oxidation (anammox), and anaerobic ammonium oxidation coupled with iron reduction (Feammox), constitute the primary mechanisms of soil dinitrogen (N2) loss. Despite the significance of these processes, there is a notable gap in research regarding the assessment of managed fertilization and irrigation impacts on anaerobic N transformations in paddy soil, crucial for achieving sustainable soil fertility management. This study addressed the gap by investigating the contributions of soil denitrification, anammox, and Feammox to N2 loss in paddy soil across varying soil depths, employing different fertilization and irrigation practices by utilizing N stable isotope technique for comprehensive insights. The results showed that anaerobic N transformation processes decreased with increasing soil depth under alternate wetting and drying (AWD) irrigation, but increased with the increasing soil depth under conventional continuous flooding (CF) irrigation. The denitrification and anammox rates varied from 0.41 to 2.12 mg N kg-1 d-1 and 0.062-0.394 mg N kg-1 d-1, respectively, which accounted for 84.3-88.1% and 11.8-15.7% of the total soil N2 loss. Significant correlations were found among denitrification rate and anammox rate (r = 0.986, p < 0.01), Fe (Ⅲ) reduction rate and denitrification rate (r = 0.527, p < 0.05), and Fe(Ⅲ) reduction rate and anammox rate (r = 0.622, p < 0.05). Moreover, nitrogen loss was more pronounced in the surface layer of the paddy soil compared to the deep layer. The study revealed that denitrification predominantly contributed to N loss in the surface soil, while Feammox emerged as a significant N loss pathway at depths ranging from 20 to 40 cm, accounting for up to 26.1% of the N loss. It was concluded that fertilization, irrigation, and soil depth significantly influenced anaerobic N transformation processes. In addition, the CF irrigation practice is best option to reduce N loss under managed fertilization. Furthermore, the role of microbial communities and their response to varying soil depths, fertilization practices, and irrigation methods could enhance our understanding on nitrogen loss pathways should be explored in future study.


Asunto(s)
Riego Agrícola , Desnitrificación , Nitrógeno , Suelo , Nitrógeno/metabolismo , Nitrógeno/análisis , Riego Agrícola/métodos , Suelo/química , Anaerobiosis , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oxidación-Reducción , Microbiología del Suelo , Fertilizantes/análisis
18.
Environ Res ; 249: 118387, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336162

RESUMEN

Achieving a balance between greenhouse gas mitigation and biomass production in grasslands necessitates optimizing irrigation frequency and nitrogen addition, which significantly influence grassland productivity and soil nitrous oxide emissions, and consequently impact the ecosystem carbon dioxide exchange. This study aimed to elucidate these influences using a controlled mesocosm experiment where bermudagrass (Cynodon dactylon L.) was cultivated under varied irrigation frequencies (daily and every 6 days) with (100 kg ha-1) or without nitrogen addition; measurements of net ecosystem carbon dioxide exchange, ecosystem respiration, soil respiration, and nitrous oxide emissions across two cutting events were performed as well. The findings revealed a critical interaction between water-filled pore space, regulated by irrigation, and nitrogen availability, with the latter exerting a more substantial influence on aboveground biomass growth and ecosystem carbon dioxide exchange than water availability. Moreover, the total dry matter was significantly higher with nitrogen addition compared to without nitrogen addition, irrespective of the irrigation frequency. In contrast, soil nitrous oxide emissions were observed to be significantly higher with increased irrigation frequency and nitrogen addition. The effects of nitrogen addition on soil respiration components appeared to depend on water availability, with autotrophic respiration seeing a significant rise with nitrogen addition under limited irrigation (5.4 ± 0.6 µmol m-2 s-1). Interestingly, the lower irrigation frequency did not result in water stress, suggesting resilience in bermudagrass. These findings highlight the importance of considering interactions between irrigation and nitrogen addition to optimize water and nitrogen input in grasslands for a synergistic balance between grassland biomass production and greenhouse gas emission mitigation.


Asunto(s)
Riego Agrícola , Biomasa , Pradera , Gases de Efecto Invernadero , Nitrógeno , Gases de Efecto Invernadero/análisis , Nitrógeno/metabolismo , Riego Agrícola/métodos , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Suelo/química , Cynodon/crecimiento & desarrollo , Cynodon/metabolismo , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Fertilizantes/análisis
19.
Environ Res ; 251(Pt 1): 118587, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38437903

RESUMEN

Nitrate (NO3-) pollution in irrigation canals is of great concern because it threatens canal water use; however, little is known about it at present. Herein, a combination of positive matrix factorization (PMF), isotope tracers, and Mixing Stable Isotope Analysis in R (MixSIAR) was developed to identify anthropogenic impacts and quantitative sources of NO3- in a rural-urban canal in China. The NO3- concentration (0.99-1.93 mg/L) of canal water increased along the flow direction and was higher than the internationally recognized eutrophication risk value in autumn and spring. The inputs of the Fuhe River, NH4+ fertilizer, soil nitrogen, manure & sewage, and rainfall were the main driving factors of canal water NO3- based on principal component analysis and PMF, which was supported by evidence from δ15N/δ18O-NO3-. According to the chemical and isotopic analyses, nitrogen transformation was weak, highlighting the potential of δ15N/δ18O-NO3- to trace NO3- sources in canal water. The MixSIAR and PMF results with a <15% divergence emphasized the predominance of the Fuhe River (contributing >50%) and anthropogenic impacts (NH4+ fertilizer plus manure & sewage, >37%) on NO3- in the entire canal, reflecting the effectiveness of the model analysis. According to the MixSIAR model, (1) higher NO3- concentration in canal water was caused by the general enhancement of human activities in spring and (2) NO3- source contributions were associated with land-use patterns. The high contributions of NH4+ fertilizer and manure & sewage showed inverse spatial variations, suggesting the necessity of reducing excessive fertilizer use in the agricultural area and controlling blind wastewater release in the urban area. These findings provide valuable insights into NO3- dynamics and fate for sustainable management of canal water resources. Nevertheless, long-term chemical and isotopic monitoring with alternative modeling should be strengthened for the accurate evaluation of canal NO3- pollution in future studies.


Asunto(s)
Monitoreo del Ambiente , Nitratos , Isótopos de Nitrógeno , Contaminantes Químicos del Agua , Nitratos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , China , Isótopos de Nitrógeno/análisis , Isótopos de Oxígeno/análisis , Fertilizantes/análisis , Ríos/química , Ciudades , Riego Agrícola
20.
Environ Res ; 252(Pt 1): 118757, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537744

RESUMEN

Understanding the major factors influencing groundwater chemistry and its evolution in irrigation areas is crucial for efficient irrigation management. Major ions and isotopes (δD-H2O together with δ18O-H2O) were used to identify the natural and anthropogenic factors contributing to groundwater salinization in the shallow aquifer of the Wadi Guenniche Plain (WGP) in the Mediterranean region of Tunisia. A comprehensive geochemical investigation of groundwater was conducted during both the low irrigation season (L-IR) and the high irrigation season (H-IR). The results show that the variation range and average concentrations of almost all the ions in both the L-IR and H-IR seasons are high. The groundwater in both seasons is characterized by high electrical conductivity and CaMgCl/SO4 and NaCl types. The dissolution of halite and gypsum, the precipitation of calcite and dolomite, and Na-Ca exchange are the main chemical reactions in the geochemical evolution of groundwater in the Wadi Guenniche Shallow Aquifer (WGSA). Stable isotopes of hydrogen and oxygen (δ18O-H2O and δD-H2O) indicate that groundwater in WGSA originated from local precipitation. In the H-IR season, the δ18O-H2O and δD-H2O values indicate that the groundwater experienced noticeable evaporation. The enriched isotopic signatures reveal that the WGSA's groundwater was influenced by irrigation return flow and seawater intrusion. The proportions of mixing with seawater were found to vary between 0.12% and 5.95%, and between 0.13% and 8.42% during the L-IR and H-IR seasons, respectively. Irrigation return flow and the associated evaporation increase the dissolved solids content in groundwater during the irrigation season. The long-term human activities (fertilization, irrigation, and septic waste infiltration) are the main drives of the high nitrate-N concentrations in groundwater. In coastal irrigation areas suffering from water scarcity, these results can help planners and policy makers understand the complexities of groundwater salinization to enable more sustainable management and development.


Asunto(s)
Riego Agrícola , Agua Subterránea , Agua Subterránea/química , Agua Subterránea/análisis , Monitoreo del Ambiente , Túnez , Salinidad , Isótopos de Oxígeno/análisis , Contaminantes Químicos del Agua/análisis , Estaciones del Año , Región Mediterránea , Efectos Antropogénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA