Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175.523
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 347-373, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941603

RESUMEN

Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.


Asunto(s)
COVID-19 , Células Dendríticas , Inmunidad Innata , Lupus Eritematoso Sistémico , SARS-CoV-2 , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , COVID-19/inmunología , Animales , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Lupus Eritematoso Sistémico/inmunología , Receptores Toll-Like/metabolismo , Diferenciación Celular , Linaje de la Célula
2.
Annu Rev Immunol ; 42(1): 615-645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941608

RESUMEN

The COVID-19 pandemic was caused by the recently emerged ß-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.


Asunto(s)
COVID-19 , Inmunidad Innata , SARS-CoV-2 , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/metabolismo , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/prevención & control , Evasión Inmune
3.
Annu Rev Immunol ; 41: 277-300, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36716750

RESUMEN

Emerging and re-emerging respiratory viral infections pose a tremendous threat to human society, as exemplified by the ongoing COVID-19 pandemic. Upon viral invasion of the respiratory tract, the host initiates coordinated innate and adaptive immune responses to defend against the virus and to promote repair of the damaged tissue. However, dysregulated host immunity can also cause acute morbidity, hamper lung regeneration, and/or lead to chronic tissue sequelae. Here, we review our current knowledge of the immune mechanisms regulating antiviral protection, host pathogenesis, inflammation resolution, and lung regeneration following respiratory viral infections, mainly using influenza virus and SARS-CoV-2 infections as examples. We hope that this review sheds light on future research directions to elucidate the cellular and molecular cross talk regulating host recovery and to pave the way to the development of pro-repair therapeutics to augment lung regeneration following viral injury.


Asunto(s)
COVID-19 , Humanos , Animales , Inmunidad Innata , Pandemias , SARS-CoV-2 , Inflamación/patología
4.
Annu Rev Immunol ; 41: 343-373, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36750314

RESUMEN

A large body of evidence generated in the last two and a half years addresses the roles of T cells in SARS-CoV-2 infection and following vaccination. Infection or vaccination induces multi-epitope CD4 and CD8 T cell responses with polyfunctionality. Early T cell responses have been associated with mild COVID-19 outcomes. In concert with animal model data, these results suggest that while antibody responses are key to prevent infection, T cell responses may also play valuable roles in reducing disease severity and controlling infection. T cell memory after vaccination is sustained for at least six months. While neutralizing antibody responses are impacted by SARS-CoV-2 variants, most CD4 and CD8 T cell responses are preserved. This review highlights the extensive progress made, and the data and knowledge gaps that remain, in our understanding of T cell responses to SARS-CoV-2 and COVID-19 vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Vacunas contra la COVID-19 , Linfocitos T CD8-positivos , Anticuerpos Antivirales
5.
Annu Rev Immunol ; 41: 561-585, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37126418

RESUMEN

Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.


Asunto(s)
COVID-19 , Interferón Tipo I , Ratones , Humanos , Animales , Interferones/farmacología , SARS-CoV-2
6.
Annu Rev Immunol ; 40: 75-94, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34985929

RESUMEN

Strong epidemiological evidence now exists that sex is an important biologic variable in immunity. Recent studies, for example, have revealed that sex differences are associated with the severity of symptoms and mortality due to coronavirus disease 2019 (COVID-19). Despite this evidence, much remains to be learned about the mechanisms underlying associations between sex differences and immune-mediated conditions. A growing body of experimental data has made significant inroads into understanding sex-influenced immune responses. As physicians seek to provide more targeted patient care, it is critical to understand how sex-defining factors (e.g., chromosomes, gonadal hormones) alter immune responses in health and disease. In this review, we highlight recent insights into sex differences in autoimmunity; virus infection, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; and cancer immunotherapy. A deeper understanding of underlying mechanisms will allow the development of a sex-based approach to disease screening and treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Femenino , Humanos , Masculino , Caracteres Sexuales , Factores Sexuales
7.
Cell ; 187(3): 596-608.e17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194966

RESUMEN

BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Caspasas/metabolismo , COVID-19/inmunología , COVID-19/virología , Pulmón/virología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Internalización del Virus , Glicoproteína de la Espiga del Coronavirus/genética
8.
Cell ; 187(3): 585-595.e6, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194968

RESUMEN

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and XBB-derived variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose-vaccinated and bivalent-vaccinated healthcare workers, XBB.1.5-wave-infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially different conformational stability of BA.2.86 spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Evasión Inmune , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/fisiología
9.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653235

RESUMEN

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Asunto(s)
COVID-19 , Evasión Inmune , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , COVID-19/inmunología , COVID-19/virología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Animales , Citotoxicidad Inmunológica , Regulación hacia Abajo , Pulmón/inmunología , Pulmón/virología , Pulmón/patología
11.
Cell ; 186(16): 3329-3331, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541193

RESUMEN

The lysosomal membrane protein TMEM106B functions as a proviral factor in SARS-CoV-2 infection, though it was not known how. In this issue of Cell, Baggen et al. demonstrate that TMEM106B serves as an ACE2-independent receptor for SARS-CoV-2 entry by promoting the fusion of the viral membrane with the lysosomal membrane.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Internalización del Virus , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso
12.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36580913

RESUMEN

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Evasión Inmune , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19 , SARS-CoV-2/clasificación , SARS-CoV-2/genética
13.
Cell ; 186(23): 5151-5164.e13, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37875109

RESUMEN

The large-scale evolution of the SARS-CoV-2 virus has been marked by rapid turnover of genetic clades. New variants show intrinsic changes, notably increased transmissibility, and antigenic changes that reduce cross-immunity induced by previous infections or vaccinations. How this functional variation shapes global evolution has remained unclear. Here, we establish a predictive fitness model for SARS-CoV-2 that integrates antigenic and intrinsic selection. The model is informed by tracking of time-resolved sequence data, epidemiological records, and cross-neutralization data of viral variants. Our inference shows that immune pressure, including contributions of vaccinations and previous infections, has become the dominant force driving the recent evolution of SARS-CoV-2. The fitness model can serve continued surveillance in two ways. First, it successfully predicts the short-term evolution of circulating strains and flags emerging variants likely to displace the previously predominant variant. Second, it predicts likely antigenic profiles of successful escape variants prior to their emergence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Vacunación , Modelos Genéticos , Monitoreo Epidemiológico
14.
Cell ; 186(21): 4597-4614.e26, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37738970

RESUMEN

SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/virología , Inmunidad Innata/genética , Pandemias , SARS-CoV-2/genética
15.
Cell ; 186(21): 4632-4651.e23, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776858

RESUMEN

The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Lactante , Humanos , Preescolar , SARS-CoV-2/metabolismo , Multiómica , Citocinas/metabolismo , Interferón-alfa , Inmunidad Mucosa
16.
Cell ; 186(6): 1263-1278.e20, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868218

RESUMEN

A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain ∼7,000 distinct amino acid mutations in the context of up to ∼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how ∼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.


Asunto(s)
COVID-19 , Virus ARN , Humanos , SARS-CoV-2/genética , Mutación , Anticuerpos Neutralizantes , Anticuerpos Antivirales
17.
Cell ; 186(15): 3277-3290.e16, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37413988

RESUMEN

The Alpha, Beta, and Gamma SARS-CoV-2 variants of concern (VOCs) co-circulated globally during 2020 and 2021, fueling waves of infections. They were displaced by Delta during a third wave worldwide in 2021, which, in turn, was displaced by Omicron in late 2021. In this study, we use phylogenetic and phylogeographic methods to reconstruct the dispersal patterns of VOCs worldwide. We find that source-sink dynamics varied substantially by VOC and identify countries that acted as global and regional hubs of dissemination. We demonstrate the declining role of presumed origin countries of VOCs in their global dispersal, estimating that India contributed <15% of Delta exports and South Africa <1%-2% of Omicron dispersal. We estimate that >80 countries had received introductions of Omicron within 100 days of its emergence, associated with accelerated passenger air travel and higher transmissibility. Our study highlights the rapid dispersal of highly transmissible variants, with implications for genomic surveillance along the hierarchical airline network.


Asunto(s)
Viaje en Avión , COVID-19 , Humanos , Filogenia , SARS-CoV-2
18.
Cell ; 186(16): 3427-3442.e22, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37421949

RESUMEN

SARS-CoV-2 is associated with broad tissue tropism, a characteristic often determined by the availability of entry receptors on host cells. Here, we show that TMEM106B, a lysosomal transmembrane protein, can serve as an alternative receptor for SARS-CoV-2 entry into angiotensin-converting enzyme 2 (ACE2)-negative cells. Spike substitution E484D increased TMEM106B binding, thereby enhancing TMEM106B-mediated entry. TMEM106B-specific monoclonal antibodies blocked SARS-CoV-2 infection, demonstrating a role of TMEM106B in viral entry. Using X-ray crystallography, cryogenic electron microscopy (cryo-EM), and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we show that the luminal domain (LD) of TMEM106B engages the receptor-binding motif of SARS-CoV-2 spike. Finally, we show that TMEM106B promotes spike-mediated syncytium formation, suggesting a role of TMEM106B in viral fusion. Together, our findings identify an ACE2-independent SARS-CoV-2 infection mechanism that involves cooperative interactions with the receptors heparan sulfate and TMEM106B.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Unión Proteica , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
19.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36580912

RESUMEN

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Asunto(s)
COVID-19 , Sistema Respiratorio , SARS-CoV-2 , Humanos , Cilios/fisiología , Cilios/virología , COVID-19/virología , Sistema Respiratorio/citología , Sistema Respiratorio/virología , SARS-CoV-2/fisiología , Microvellosidades/fisiología , Microvellosidades/virología , Internalización del Virus , Células Epiteliales/fisiología , Células Epiteliales/virología
20.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736301

RESUMEN

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Asunto(s)
COVID-19 , Mycobacterium , Niño , Humanos , Interferón gamma , SARS-CoV-2 , Interferón-alfa , Factor 1 Regulador del Interferón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA