Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Parasitology ; 151(5): 495-505, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38465379

RESUMEN

Avian schistosomes are snail-borne trematode parasites (Trichobilharzia spp.) that can cause a nasty skin rash in humans when their cercariae mistake us for their normal bird hosts. We sought to investigate drivers of the spatial distribution of Trichobilharzia cercaria abundance throughout Northern Michigan lakes. For 38 sites on 16 lakes, we assessed several dozen potential environmental predictors that we hypothesized might have direct or indirect effects on overall cercaria abundance, based on known relationships between abiotic and biotic factors in wetland ecosystems. We included variables quantifying local densities of intermediate hosts, temperature, periphyton growth rates, human land use and hydrology. We also measured daily abundance of schistosome cercariae in the water over a 5-week period, supported by community scientists who collected and preserved filtered water samples for qPCR. The strongest predictor of cercaria abundance was Lymnaea host snail density. Lymnaea density was higher in deeper lakes and at sites with more deciduous tree cover, consistent with their association with cool temperature habitats. Contrary to past studies of human schistosomes, we also found a significant negative relationship between cercaria abundance and submerged aquatic vegetation, possibly due to vegetation blocking cercaria movement from offshore snail beds. If future work shows that these effects are indeed causal, then these results suggest possible new approaches to managing swimmer's itch risk in northern MI lakes, such as modifying tree cover and shallow-water vegetation at local sites.


Asunto(s)
Enfermedades de las Aves , Aves , Lagos , Schistosomatidae , Caracoles , Animales , Lagos/parasitología , Michigan , Schistosomatidae/aislamiento & purificación , Schistosomatidae/genética , Schistosomatidae/fisiología , Aves/parasitología , Caracoles/parasitología , Enfermedades de las Aves/parasitología , Enfermedades de las Aves/epidemiología , Ecosistema , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/epidemiología , Temperatura , Cercarias/fisiología , Humedales
2.
Adv Exp Med Biol ; 1454: 107-155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008265

RESUMEN

Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.


Asunto(s)
Infecciones por Trematodos , Animales , Humanos , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria , Trematodos/fisiología , Trematodos/patogenicidad , Estadios del Ciclo de Vida , Interacciones Huésped-Parásitos , Schistosomatidae/genética
3.
J Helminthol ; 98: e47, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828707

RESUMEN

Relative to the numerous studies focused on mammalian schistosomes, fewer include avian schistosomatids particularly in the southern hemisphere. This is changing and current research emerging from the Neotropics shows a remarkable diversity of endemic taxa. To contribute to this effort, nine ducks (Spatula cyanoptera, S.versicolor, Netta peposaca), 12 swans (Cygnus melancoryphus) and 1,400 Physa spp. snails from Chile and Argentina were collected for adults and larval schistosomatids, respectively. Isolated schistosomatids were preserved for morphological and molecular analyses (28S and COI genes). Four different schistosomatid taxa were retrieved from birds: Trichobilharzia sp. in N. peposaca and S. cyanoptera that formed a clade; S.cyanoptera and S. versicolor hosted Trichobilharzia querquedulae; Cygnus melancoryphus hosted the nasal schistosomatid, Nasusbilharzia melancorhypha; and one visceral, Schistosomatidae gen. sp., which formed a clade with furcocercariae from Argentina and Chile from previous work. Of the physid snails, only one from Argentina had schistosomatid furcocercariae that based on molecular analyses grouped with T. querquedulae. This study represents the first description of adult schistosomatids from Chile as well as the elucidation of the life cycles of N.melancorhypha and T. querquedulae in Chile and Neotropics, respectively. Without well-preserved adults, the putative new genus Schistosomatidae gen. sp. could not be described, but its life cycle involves Chilina spp. and C. melancoryphus. Scanning electron microscopy of T. querquedulae revealed additional, undescribed morphological traits, highlighting its diagnostic importance. Authors stress the need for additional surveys of avian schistosomatids from the Neotropics to better understand their evolutionary history.


Asunto(s)
Estadios del Ciclo de Vida , Filogenia , Schistosomatidae , Animales , Schistosomatidae/genética , Schistosomatidae/clasificación , Schistosomatidae/aislamiento & purificación , Schistosomatidae/crecimiento & desarrollo , Schistosomatidae/anatomía & histología , Chile , Argentina , Aves/parasitología , Enfermedades de las Aves/parasitología , ARN Ribosómico 28S/genética , Caracoles/parasitología , América del Sur , Complejo IV de Transporte de Electrones/genética
4.
J Parasitol ; 110(2): 170-178, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629269

RESUMEN

During a 2021 parasitological survey of birds in the Nyae Nyae-Khaudum Dispersal Area (Kavango-Zambezi Transfrontier Conservation Area, Namibia), we collected 9 specimens of Dendritobilharzia pulverulenta (Braun, 1901) Skrjabin, 1924 infecting the blood (heart lumen) of a white-backed duck, Thalassornis leuconotus (Eyton, 1838) (Anseriformes: Anatidae), and a fulvous whistling duck, Dendrocygna bicolor (Vieillot, 1816) (Anatidae). These flukes were fixed for morphology and preserved for DNA extraction. We assigned our specimens to DendritobilharziaSkrjabin and Zakharow, 1920 because they were strongly dorso-ventrally flattened in both sexes and had an intestinal cyclocoel with a zig-zag common cecum with lateral dendritic ramifications, numerous testes posterior to the cyclocoel and flanking the dendritic ramifications, and a tightly compacted convoluted ovary as well as lacking an oral sucker, ventral sucker, and gynaecophoric canal. Further, our specimens were morphologically identical to previously published descriptions of D. pulverulenta. Sequences of the 28S from our specimens were nearly identical to those identified as D. pulverulenta from North America (New Mexico), and our 28S phylogenetic analysis recovered D. pulverulenta within a polytomy of other Gigantobilharziinae spp. The CO1 phylogenetic analysis recovered a monophyletic Dendritobilharzia and, with low taxon sampling, a monophyletic Gigantobilharzia. This is the first record of a species of Dendritobilharzia infecting these ducks as well as the first record of an adult Dendritobilharzia from sub-Saharan Africa. The original description of adult D. pulverulenta (type locality: northern Sudan) was based on 2 males only, and hence the present study is the first description of female D. pulverulenta from Africa (the continent of the type locality). We reassign 2 Gigantobilharziinae spp. based on morphology and nucleotide evidence: Gigantobilharzia ensenadense (Lorenti, Brant, Gilardoni, Diaz, and Cremonte, 2022) Dutton and Bullard, n. comb., and Gigantobilharzia patagonense (Lorenti, Brant, Gilardoni, Diaz, and Cremonte, 2022) Dutton and Bullard, n. comb. We also comment on several avian schistosome sequences whose identities need confirmation or that likely have been misidentified.


Asunto(s)
Aves , Schistosomatidae , Animales , Masculino , Femenino , Filogenia , Namibia , Schistosomatidae/genética , Patos
5.
Parasit Vectors ; 17(1): 126, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481352

RESUMEN

BACKGROUND: Swimmer's itch, an allergic contact dermatitis caused by avian and mammalian blood flukes, is a parasitic infection affecting people worldwide. In particular, avian blood flukes of the genus Trichobilharzia are infamous for their role in swimmer's itch cases. These parasites infect waterfowl as a final host, but incidental infections by cercariae in humans are frequently reported. Upon accidental infections of humans, parasite larvae will be recognized by the immune system and destroyed, leading to painful itchy skin lesions. However, one species, Trichobilharzia regenti, can escape this response in experimental animals and reach the spinal cord, causing neuroinflammation. In the last few decades, there has been an increase in case reports across Europe, making it an emerging zoonosis. METHODS: Following a reported case of swimmer's itch in Kampenhout in 2022 (Belgium), the transmission site consisting of a private pond and an adjacent creek was investigated through a malacological and parasitological survey. RESULTS: Six snail species were collected, including the widespread Ampullaceana balthica, a well-known intermediate host for Trichobilharzia parasites. Shedding experiments followed by DNA barcoding revealed a single snail specimen to be infected with T. regenti, a new species record for Belgium and by extension the Benelux. Moreover, it is the most compelling case to date of the link between this neurotropic parasite and cercarial dermatitis. Additionally, an Echinostomatidae sp. and Notocotylus sp. were isolated from two other specimens of A. balthica. However, the lack of reference DNA sequences for these groups in the online repositories prevented genus- and species-level identification, respectively. CONCLUSIONS: The presence of T. regenti in Belgium might have severe clinical implications and its finding highlights the need for increased vigilance and diagnostic awareness among medical professionals. The lack of species-level identification of the other two parasite species showcases the barcoding void for trematodes. Overall, these findings demonstrate the need for a Belgian framework to rapidly detect and monitor zoonotic outbreaks of trematode parasites within the One Health context.


Asunto(s)
Dermatitis , Schistosomatidae , Esquistosomiasis , Enfermedades Cutáneas Parasitarias , Infecciones por Trematodos , Animales , Humanos , Infecciones por Trematodos/parasitología , Esquistosomiasis/epidemiología , Schistosomatidae/genética , Dermatitis/parasitología , Zoonosis , Enfermedades Cutáneas Parasitarias/epidemiología , Caracoles/parasitología , Aves/parasitología , Mamíferos
6.
PeerJ ; 12: e17598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011383

RESUMEN

Background: In Europe, avian schistosomes of the genus Trichobilharzia are the most common etiological agents involved in human cercarial dermatitis (swimmer's itch). Manifested by a skin rash, the condition is caused by an allergic reaction to cercariae of nonhuman schistosomes. Humans are an accidental host in this parasite's life cycle, while water snails are the intermediate, and waterfowl are the final hosts. The study aimed to conduct a molecular and phylogenetic analysis of Trichobilharzia species occurring in recreational waters in North-Eastern Poland. Methodology: The study area covered three water bodies (Lake Skanda, Lake Ukiel, and Lake Tyrsko) over the summer of 2021. In total, 747 pulmonate freshwater snails (Radix spp., Lymnaea stagnalis) were collected. Each snail was subjected to 1-2 h of light stimulation to induce cercarial expulsion. The phylogenetic analyses of furcocercariae were based on the partial sequence of the ITS region (ITS1, 5.8S rDNA, ITS2 and 28SrDNA). For Radix spp. phylogenetic analyses were based on the ITS-2 region. Results: The prevalence of the Trichobilharzia species infection in snails was 0.5%. Two out of 478 (0.4%) L. stagnaliswere found to be infected with Trichobilharzia szidati. Moreover, two out of 269 (0.7%) snails of the genus Radix were positive for schistosome cercariae. Both snails were identified as Radix auricularia. One of them was infected with Trichobilharzia franki and the other with Trichobilharzia sp. Conclusions: Molecular identification of avian schistosome species, both at the intermediate and definitive hosts level, constitutes an important source of information on a potential threat and prognosis of local swimmer's itch occurrence, and helps to determine species diversity in a particular area.


Asunto(s)
Filogenia , Schistosomatidae , Animales , Schistosomatidae/genética , Polonia/epidemiología , Caracoles/parasitología , Lagos/parasitología , Humanos , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/epidemiología , ADN de Helmintos/genética
7.
J Parasitol ; 109(6): 633-637, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38151047

RESUMEN

The indigenous North American mammalian schistosome Heterobilharzia americana has recently attracted attention for causing outbreaks in dogs in states outside of its southeastern U.S. distribution. Although H. americana has yet to be reported in New Mexico, we examined 2 New Mexico isolates of Galba snails to determine their susceptibility to experimental infection with an isolate of H. americana from Utah. One of the Galba isolates from the Rio Grande bosque in the Albuquerque suburb of Corrales was identified as Galba humilis, and like specimens of the same taxon from Utah, proved susceptible to H. americana (27.6% of exposed surviving snails positive). The second Galba isolate sourced from the northern mountains of New Mexico, which surprisingly was revealed to be Galba schirazensis based on cytochrome c oxidase 1, 16S rRNA, and the internal transcribed spacer 2 markers, was also susceptible to H. americana (56.3% of exposed surviving field-derived snails and 46.4% first generation [F1] snails positive). This is the first report of the latter snail being a compatible snail host for H. americana. As G. schirazensis has a wide, albeit spotty, distribution and is considered an invasive species, it provides yet another opportunity for H. americana to expand its known range, potentially including the state of New Mexico as well.


Asunto(s)
Schistosomatidae , Caracoles , Perros , Animales , New Mexico/epidemiología , ARN Ribosómico 16S/genética , Caracoles/genética , Schistosomatidae/genética , Schistosoma , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA