Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nature ; 609(7925): 128-135, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978188

RESUMEN

Neurons are highly polarized cells that face the fundamental challenge of compartmentalizing a vast and diverse repertoire of proteins in order to function properly1. The axon initial segment (AIS) is a specialized domain that separates a neuron's morphologically, biochemically and functionally distinct axon and dendrite compartments2,3. How the AIS maintains polarity between these compartments is not fully understood. Here we find that in Caenorhabditis elegans, mouse, rat and human neurons, dendritically and axonally polarized transmembrane proteins are recognized by endocytic machinery in the AIS, robustly endocytosed and targeted to late endosomes for degradation. Forcing receptor interaction with the AIS master organizer, ankyrinG, antagonizes receptor endocytosis in the AIS, causes receptor accumulation in the AIS, and leads to polarity deficits with subsequent morphological and behavioural defects. Therefore, endocytic removal of polarized receptors that diffuse into the AIS serves as a membrane-clearance mechanism that is likely to work in conjunction with the known AIS diffusion-barrier mechanism to maintain neuronal polarity on the plasma membrane. Our results reveal a conserved endocytic clearance mechanism in the AIS to maintain neuronal polarity by reinforcing axonal and dendritic compartment membrane boundaries.


Asunto(s)
Segmento Inicial del Axón , Polaridad Celular , Endocitosis , Animales , Segmento Inicial del Axón/metabolismo , Caenorhabditis elegans , Membrana Celular/metabolismo , Dendritas/metabolismo , Difusión , Endosomas/metabolismo , Humanos , Ratones , Transporte de Proteínas , Proteolisis , Ratas , Receptores de Superficie Celular/metabolismo
2.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37195288

RESUMEN

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Asunto(s)
Segmento Inicial del Axón , Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Segmento Inicial del Axón/metabolismo , Ancirinas/genética , Ancirinas/metabolismo , Neuronas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
3.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37288813

RESUMEN

The axon initial segment (AIS) is a highly specialized neuronal compartment that regulates the generation of action potentials and maintenance of neuronal polarity. Live imaging of the AIS is challenging due to the limited number of suitable labeling methods. To overcome this limitation, we established a novel approach for live labeling of the AIS using unnatural amino acids (UAAs) and click chemistry. The small size of UAAs and the possibility of introducing them virtually anywhere into target proteins make this method particularly suitable for labeling of complex and spatially restricted proteins. Using this approach, we labeled two large AIS components, the 186 kDa isoform of neurofascin (NF186; encoded by Nfasc) and the 260 kDa voltage-gated Na+ channel (NaV1.6, encoded by Scn8a) in primary neurons and performed conventional and super-resolution microscopy. We also studied the localization of epilepsy-causing NaV1.6 variants with a loss-of-function effect. Finally, to improve the efficiency of UAA incorporation, we developed adeno-associated viral (AAV) vectors for click labeling in neurons, an achievement that could be transferred to more complex systems such as organotypic slice cultures, organoids, and animal models.


Asunto(s)
Segmento Inicial del Axón , Química Clic , Animales , Potenciales de Acción/fisiología , Aminoácidos/metabolismo , Segmento Inicial del Axón/metabolismo , Neuronas , Ratones , Ratas
4.
J Neurosci ; 43(3): 359-372, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36639893

RESUMEN

The structural plasticity of the axon initial segment (AIS) contributes to the homeostatic control of activity and optimizes the function of neural circuits; however, the underlying mechanisms are not fully understood. In this study, we prepared a slice culture containing nucleus magnocellularis from chickens of both sexes that reproduces most features of AIS plasticity in vivo, regarding its effects on characteristics of AIS and cell-type specificity, and revealed that microtubule reorganization via activation of CDK5 underlies plasticity. Treating the culture with a high-K+ medium shortened the AIS and reduced sodium current and membrane excitability, specifically in neurons tuned to high-frequency sound, creating a tonotopic difference in AIS length in the nucleus. Pharmacological analyses revealed that this AIS shortening was driven by multiple Ca2+ pathways and subsequent signaling molecules that converge on CDK5 via the activation of ERK1/2. AIS shortening was suppressed by overexpression of dominant-negative CDK5, whereas it was facilitated by the overexpression of p35, an activator of CDK5. Notably, p35(T138A), a phosphorylation-inactive mutant of p35, did not shorten the AIS. Moreover, microtubule stabilizers occluded AIS shortening during the p35 overexpression, indicating that CDK5/p35 mediated AIS shortening by promoting disassembly of microtubules at distal AIS. This study highlights the importance of microtubule reorganization and regulation of CDK5 activity in structural AIS plasticity and the tuning of AIS characteristics in neurons.SIGNIFICANCE STATEMENT The structural plasticity of AIS has a strong impact on the output of neurons and plays a fundamental role in the physiology and pathology of the brain. However, the mechanisms linking neuronal activity to structural changes in AIS are not well understood. In this study, we prepared an organotypic culture of avian auditory brainstem, reproducing most AIS plasticity features in vivo, and we revealed that activity-dependent AIS shortening occurs through the disassembly of microtubules at distal AIS via activation of CDK5/p35 signals. This study emphasizes the importance of microtubule reorganization and regulation of CDK5 activity in structural AIS plasticity and tonotopic differentiation of AIS structures in the brainstem auditory circuit.


Asunto(s)
Segmento Inicial del Axón , Quinasa 5 Dependiente de la Ciclina , Animales , Femenino , Masculino , Segmento Inicial del Axón/metabolismo , Pollos , Quinasa 5 Dependiente de la Ciclina/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Fosforilación
5.
J Neurosci ; 43(10): 1830-1844, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36717226

RESUMEN

The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the ß-amyloid (Aß) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aß are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase in App gene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+ reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown of App block the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aß, either fibrillar or oligomeric, has no effect. In culture, APPSwe (a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and ßIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS. In vivo as in vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD.SIGNIFICANCE STATEMENT While the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity. In vivo and in vitro, modest amounts of excess APP alter the properties of the axon initial segment. The ß-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia.


Asunto(s)
Enfermedad de Alzheimer , Segmento Inicial del Axón , Masculino , Femenino , Ratones , Humanos , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Segmento Inicial del Axón/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas de la Membrana , Ratones Transgénicos , Modelos Animales de Enfermedad
6.
J Neurosci ; 42(43): 8054-8065, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36096668

RESUMEN

The axon initial segment (AIS) generates action potentials and maintains neuronal polarity by regulating the differential trafficking and distribution of proteins, transport vesicles, and organelles. Injury and disease can disrupt the AIS, and the subsequent loss of clustered ion channels and polarity mechanisms may alter neuronal excitability and function. However, the impact of AIS disruption on axon regeneration after injury is unknown. We generated male and female mice with AIS-deficient multipolar motor neurons by deleting AnkyrinG, the master scaffolding protein required for AIS assembly and maintenance. We found that after nerve crush, neuromuscular junction reinnervation was significantly delayed in AIS-deficient motor neurons compared with control mice. In contrast, loss of AnkyrinG from pseudo-unipolar sensory neurons did not impair axon regeneration into the intraepidermal nerve fiber layer. Even after AIS-deficient motor neurons reinnervated the neuromuscular junction, they failed to functionally recover because of reduced synaptic vesicle protein 2 at presynaptic terminals. In addition, mRNA trafficking was disrupted in AIS-deficient axons. Our results show that, after nerve injury, an intact AIS is essential for efficient regeneration and functional recovery of axons in multipolar motor neurons. Our results also suggest that loss of polarity in AIS-deficient motor neurons impairs the delivery of axonal proteins, mRNAs, and other cargoes necessary for regeneration. Thus, therapeutic strategies for axon regeneration must consider preservation or reassembly of the AIS.SIGNIFICANCE STATEMENT Disruption of the axon initial segment is a common event after nervous system injury. For multipolar motor neurons, we show that axon initial segments are essential for axon regeneration and functional recovery after injury. Our results may help explain injuries where axon regeneration fails, and suggest strategies to promote more efficient axon regeneration.


Asunto(s)
Segmento Inicial del Axón , Axones , Masculino , Femenino , Ratones , Animales , Axones/fisiología , Segmento Inicial del Axón/metabolismo , Ancirinas/metabolismo , Regeneración Nerviosa , Sinapsis/metabolismo , Canales Iónicos/metabolismo , Neuronas Motoras/metabolismo , ARN Mensajero/metabolismo
7.
Dev Biol ; 489: 47-54, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35640681

RESUMEN

Neurons are highly polarized cells with extensive axonal and dendritic projections that send and receive signals over long distances. Neuronal polarity requires sorting and maintaining a unique set of proteins to the neuron's distinct axonal and somatodendritic domains. The axon initial segment (AIS) is a specialized subcellular region located between these two domains and is critical for neuronal polarity. The AIS has a complex and elaborately organized molecular structure that enables its functions in neuronal polarity. Disruption of the AIS is associated with neurodevelopmental and neuropsychiatric disease pathologies, thus highlighting the importance of the AIS in neuronal physiology. This review discusses recent progress toward understanding the molecular architecture of the AIS and its importance in neuronal polarity through regulating protein diffusion and vesicular trafficking.


Asunto(s)
Segmento Inicial del Axón , Segmento Inicial del Axón/metabolismo , Segmento Inicial del Axón/patología , Axones/metabolismo , Polaridad Celular/fisiología , Neuronas/metabolismo , Transporte de Proteínas/fisiología
8.
Proc Natl Acad Sci U S A ; 116(39): 19717-19726, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31451636

RESUMEN

Giant ankyrin-G (gAnkG) coordinates assembly of axon initial segments (AISs), which are sites of action potential generation located in proximal axons of most vertebrate neurons. Here, we identify a mechanism required for normal neural development in humans that ensures ordered recruitment of gAnkG and ß4-spectrin to the AIS. We identified 3 human neurodevelopmental missense mutations located in the neurospecific domain of gAnkG that prevent recruitment of ß4-spectrin, resulting in a lower density and more elongated pattern for gAnkG and its partners than in the mature AIS. We found that these mutations inhibit transition of gAnkG from a closed configuration with close apposition of N- and C-terminal domains to an extended state that is required for binding and recruitment of ß4-spectrin, and normally occurs early in development of the AIS. We further found that the neurospecific domain is highly phosphorylated in mouse brain, and that phosphorylation at 2 sites (S1982 and S2619) is required for the conformational change and for recruitment of ß4-spectrin. Together, these findings resolve a discrete intermediate stage in formation of the AIS that is regulated through phosphorylation of the neurospecific domain of gAnkG.


Asunto(s)
Ancirinas/genética , Segmento Inicial del Axón/metabolismo , Citoesqueleto de Actina/metabolismo , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Ancirinas/metabolismo , Segmento Inicial del Axón/fisiología , Axones/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Ratones Noqueados , Mutación , Neuronas/metabolismo , Vertebrados/metabolismo
9.
J Neurosci ; 40(42): 7999-8024, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928889

RESUMEN

In multipolar vertebrate neurons, action potentials (APs) initiate close to the soma, at the axonal initial segment. Invertebrate neurons are typically unipolar with dendrites integrating directly into the axon. Where APs are initiated in the axons of invertebrate neurons is unclear. Voltage-gated sodium (NaV) channels are a functional hallmark of the axonal initial segment in vertebrates. We used an intronic Minos-Mediated Integration Cassette to determine the endogenous gene expression and subcellular localization of the sole NaV channel in both male and female Drosophila, para Despite being the only NaV channel in the fly, we show that only 23 ± 1% of neurons in the embryonic and larval CNS express para, while in the adult CNS para is broadly expressed. We generated a single-cell transcriptomic atlas of the whole third instar larval brain to identify para expressing neurons and show that it positively correlates with markers of differentiated, actively firing neurons. Therefore, only 23 ± 1% of larval neurons may be capable of firing NaV-dependent APs. We then show that Para is enriched in an axonal segment, distal to the site of dendritic integration into the axon, which we named the distal axonal segment (DAS). The DAS is present in multiple neuron classes in both the third instar larval and adult CNS. Whole cell patch clamp electrophysiological recordings of adult CNS fly neurons are consistent with the interpretation that Nav-dependent APs originate in the DAS. Identification of the distal NaV localization in fly neurons will enable more accurate interpretation of electrophysiological recordings in invertebrates.SIGNIFICANCE STATEMENT The site of action potential (AP) initiation in invertebrates is unknown. We tagged the sole voltage-gated sodium (NaV) channel in the fly, para, and identified that Para is enriched at a distal axonal segment. The distal axonal segment is located distal to where dendrites impinge on axons and is the likely site of AP initiation. Understanding where APs are initiated improves our ability to model neuronal activity and our interpretation of electrophysiological data. Additionally, para is only expressed in 23 ± 1% of third instar larval neurons but is broadly expressed in adults. Single-cell RNA sequencing of the third instar larval brain shows that para expression correlates with the expression of active, differentiated neuronal markers. Therefore, only 23 ± 1% of third instar larval neurons may be able to actively fire NaV-dependent APs.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Proteínas de Drosophila/biosíntesis , Drosophila/metabolismo , Neuronas/metabolismo , Canales de Sodio/biosíntesis , Canales de Sodio Activados por Voltaje/biosíntesis , Potenciales de Acción/fisiología , Animales , Axones/fisiología , Dendritas/metabolismo , Proteínas de Drosophila/genética , Fenómenos Electrofisiológicos , Electrorretinografía , Expresión Génica/genética , Larva , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Técnicas de Placa-Clamp , Canales de Sodio/genética , Transcriptoma , Canales de Sodio Activados por Voltaje/genética
10.
J Neurosci ; 39(22): 4238-4251, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-30914445

RESUMEN

Nav1.6 (SCN8A) is a major voltage-gated sodium channel in the mammalian CNS, and is highly concentrated at the axon initial segment (AIS). As previously demonstrated, the microtubule associated protein MAP1B binds the cytoplasmic N terminus of Nav1.6, and this interaction is disrupted by the mutation p.VAVP(77-80)AAAA. We now demonstrate that this mutation results in WT expression levels on the somatic surface but reduced surface expression at the AIS of cultured rat embryonic hippocampal neurons from both sexes. The mutation of the MAP1B binding domain did not impair vesicular trafficking and preferential delivery of Nav1.6 to the AIS; nor was the diffusion of AIS inserted channels altered relative to WT. However, the reduced AIS surface expression of the MAP1B mutant was restored to WT levels by inhibiting endocytosis with Dynasore, indicating that compartment-specific endocytosis was responsible for the lack of AIS accumulation. Interestingly, the lack of AIS targeting resulted in an elevated percentage of persistent current, suggesting that this late current originates predominantly in the soma. No differences in the voltage dependence of activation or inactivation were detected in the MAP1B binding mutant relative to WT channel. We hypothesize that MAP1B binding to the WT Nav1.6 masks an endocytic motif, thus allowing long-term stability on the AIS surface. This work identifies a critical and important new role for MAP1B in the regulation of neuronal excitability and adds to our understanding of AIS maintenance and plasticity, in addition to identifying new target residues for pathogenic mutations of SCN8ASIGNIFICANCE STATEMENT Nav1.6 is a major voltage-gated sodium channel in human brain, where it regulates neuronal activity due to its localization at the axon initial segment (AIS). Nav1.6 mutations cause epilepsy, intellectual disability, and movement disorders. In the present work, we show that loss of interaction with MAP1B within the Nav1.6 N terminus reduces the steady-state abundance of Nav1.6 at the AIS. The effect is due to increased Nav1.6 endocytosis at this neuronal compartment rather than a failure of forward trafficking to the AIS. This work confirms a new biological role of MAP1B in the regulation of sodium channel localization and will contribute to future analysis of patient mutations in the cytoplasmic N terminus of Nav1.6.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Masculino , Dominios Proteicos , Ratas
11.
J Neurosci ; 39(25): 4864-4873, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30967428

RESUMEN

Selective cargo transport into axons and dendrites over the microtubule network is essential for neuron polarization. The axon initial segment (AIS) separates the axon from the somatodendritic compartment and controls the microtubule-dependent transport into the axon. Interestingly, the AIS has a characteristic microtubule organization; it contains bundles of closely spaced microtubules with electron dense cross-bridges, referred to as microtubule fascicles. The microtubule binding protein TRIM46 localizes to the AIS and when overexpressed in non-neuronal cells forms microtubule arrays that closely resemble AIS fascicles in neurons. However, the precise role of TRIM46 in microtubule fasciculation in neurons has not been studied. Here we developed a novel correlative light and electron microscopy approach to study AIS microtubule organization. We show that in cultured rat hippocampal neurons of both sexes, TRIM46 levels steadily increase at the AIS during early neuronal differentiation and at the same time closely spaced microtubules form, whereas the fasciculated microtubules appear at later developmental stages. Moreover, we localized TRIM46 to the electron dense cross-bridges and show that depletion of TRIM46 causes loss of cross-bridges and increased microtubule spacing. These data indicate that TRIM46 has an essential role in organizing microtubule fascicles in the AIS.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is a specialized region at the proximal axon where the action potential is initiated. In addition the AIS separates the axon from the somatodendritic compartment, where it controls protein transport to establish and maintain neuron polarity. Cargo vesicles destined for the axon recognize specialized microtubule tracks that enter the AIS. Interestingly the microtubules entering the AIS form crosslinked bundles, called microtubule fascicules. Recently we found that the microtubule-binding protein TRIM46 localizes to the AIS, where it may organize the AIS microtubules. In the present study we developed a novel correlative light and electron microscopy approach to study the AIS microtubules during neuron development and identified an essential role for TRIM46 in microtubule fasciculation.


Asunto(s)
Fasciculación Axonal/fisiología , Segmento Inicial del Axón/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Animales , Polaridad Celular/fisiología , Células Cultivadas , Citoesqueleto/metabolismo , Femenino , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Neuronas/citología , Ratas , Proteínas de Motivos Tripartitos/genética
12.
Proc Natl Acad Sci U S A ; 114(1): 154-159, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27994149

RESUMEN

KCNQ2/3 (Kv7.2/7.3) channels and voltage-gated sodium channels (VGSCs) are enriched in the axon initial segment (AIS) where they bind to ankyrin-G and coregulate membrane potential in central nervous system neurons. The molecular mechanisms supporting coordinated regulation of KCNQ and VGSCs and the cellular mechanisms governing KCNQ trafficking to the AIS are incompletely understood. Here, we show that fibroblast growth factor 14 (FGF14), previously described as a VGSC regulator, also affects KCNQ function and localization. FGF14 knockdown leads to a reduction of KCNQ2 in the AIS and a reduction in whole-cell KCNQ currents. FGF14 positively regulates KCNQ2/3 channels in a simplified expression system. FGF14 interacts with KCNQ2 at a site distinct from the FGF14-VGSC interaction surface, thus enabling the bridging of NaV1.6 and KCNQ2. These data implicate FGF14 as an organizer of channel localization in the AIS and provide insight into the coordination of KCNQ and VGSC conductances in the regulation of membrane potential.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Potenciales de la Membrana/fisiología , Ancirinas/metabolismo , Células Cultivadas , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/genética , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Canales de Sodio Activados por Voltaje/metabolismo
13.
Traffic ; 18(12): 808-824, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28941293

RESUMEN

The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal-specific kinase cyclin-dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5-dependent phosphorylation of the dynein regulator Ndel1 is required for proper re-routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis-sorting defects. While inhibition of the CDK5-Ndel1-Lis1-dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein-dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Axones/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Dineínas/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte de Proteínas/fisiología , Ratas Sprague-Dawley
14.
J Cell Sci ; 130(13): 2209-2220, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28533267

RESUMEN

Caspr2 and TAG-1 (also known as CNTNAP2 and CNTN2, respectively) are cell adhesion molecules (CAMs) associated with the voltage-gated potassium channels Kv1.1 and Kv1.2 (also known as KCNA1 and KCNA2, respectively) at regions controlling axonal excitability, namely, the axon initial segment (AIS) and juxtaparanodes of myelinated axons. The distribution of Kv1 at juxtaparanodes requires axo-glial contacts mediated by Caspr2 and TAG-1. In the present study, we found that TAG-1 strongly colocalizes with Kv1.2 at the AIS of cultured hippocampal neurons, whereas Caspr2 is uniformly expressed along the axolemma. Live-cell imaging revealed that Caspr2 and TAG-1 are sorted together in axonal transport vesicles. Therefore, their differential distribution may result from diffusion and trapping mechanisms induced by selective partnerships. By using deletion constructs, we identified two molecular determinants of Caspr2 that regulate its axonal positioning. First, the LNG2-EGF1 modules in the ectodomain of Caspr2, which are involved in its axonal distribution. Deletion of these modules promotes AIS localization and association with TAG-1. Second, the cytoplasmic PDZ-binding site of Caspr2, which could elicit AIS enrichment and recruitment of the membrane-associated guanylate kinase (MAGuK) protein MPP2. Hence, the selective distribution of Caspr2 and TAG-1 may be regulated, allowing them to modulate the strategic function of the Kv1 complex along axons.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Contactina 2/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Canales de Potasio de la Superfamilia Shaker/genética , Axones/metabolismo , Axones/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Células HEK293 , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Neuroglía/metabolismo , Neuronas/metabolismo , Neuronas/fisiología
15.
J Cell Sci ; 130(21): 3663-3675, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28935671

RESUMEN

Central nervous system (CNS) axons lose their intrinsic ability to regenerate upon maturity, whereas peripheral nervous system (PNS) axons do not. A key difference between these neuronal types is their ability to transport integrins into axons. Integrins can mediate PNS regeneration, but are excluded from adult CNS axons along with their Rab11 carriers. We reasoned that exclusion of the contents of Rab11 vesicles including integrins might contribute to the intrinsic inability of CNS neurons to regenerate, and investigated this by performing laser axotomy. We identify a novel regulator of selective axon transport and regeneration, the ARF6 guanine-nucleotide-exchange factor (GEF) EFA6 (also known as PSD). EFA6 exerts its effects from a location within the axon initial segment (AIS). EFA6 does not localise at the AIS in dorsal root ganglion (DRG) axons, and in these neurons, ARF6 activation is counteracted by an ARF GTPase-activating protein (GAP), which is absent from the CNS, ACAP1. Depleting EFA6 from cortical neurons permits endosomal integrin transport and enhances regeneration, whereas overexpressing EFA6 prevents DRG regeneration. Our results demonstrate that ARF6 is an intrinsic regulator of regenerative capacity, implicating EFA6 as a focal molecule linking the AIS, signalling and transport.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Transporte Axonal/genética , Corteza Cerebral/metabolismo , Dendritas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Cadenas alfa de Integrinas/metabolismo , Neuronas/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Segmento Inicial del Axón/ultraestructura , Corteza Cerebral/ultraestructura , Dendritas/ultraestructura , Embrión de Mamíferos , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Cadenas alfa de Integrinas/genética , Masculino , Microtúbulos , Neuronas/ultraestructura , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
16.
Biochem Biophys Res Commun ; 516(1): 15-21, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31186137

RESUMEN

Cilia, as key integrators of extracellular ligand-based signaling, play a critical role in signaling in the neuronal system. However, the function of cilia in neurons is largely unknown. In this study, we discovered that cilia morphology and ciliary protein localization were associated with axon initial segment (AIS) morphology, including length and location. Cilia morphological changes induced by the serotonin (5-HT) receptor 5-HT6R, intraflagellar transport 88 (Ift88) and kinesin family member 3A (KIF3A) altered AIS length and location. The change in cilia morphology was associated with aberrant localization of ankyrin G (AnkG) and voltage-gated sodium channel 1.2 (Nav1.2). Cilia morphology altered action potential (AP) amplitude and spike firing. Taken together, our data strongly suggest that cilia function might have a marked impact on neuron excitability by regulating AIS morphology and ion channel localization. Our findings highlight a novel aspect linking cilia function and neuron excitability.


Asunto(s)
Segmento Inicial del Axón/ultraestructura , Cilios/metabolismo , Neuronas/citología , Receptores de Serotonina/metabolismo , Potenciales de Acción , Animales , Segmento Inicial del Axón/metabolismo , Células Cultivadas , Cilios/ultraestructura , Cinesinas/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteínas Supresoras de Tumor/metabolismo
17.
Biol Chem ; 400(9): 1141-1146, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30951495

RESUMEN

The axon initial segment (AIS) comprises a sub-membranous lattice containing periodic actin rings. The overall AIS structure is insensitive to actin-disrupting drugs, but the effects of actin-disrupting drugs on actin rings lack consensus. We examined the effect of latrunculin A and B on the actin cytoskeleton of neurons in culture and actin rings in the AIS. Both latrunculin A and B markedly reduced the overall amount of F-actin in treated neurons in a dose-dependent manner, but the periodicity of actin rings remained unaffected. The insensitivity of AIS actin rings to latrunculin suggests they are relatively stable.


Asunto(s)
Actinas/metabolismo , Segmento Inicial del Axón/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Tiazolidinas/farmacología , Animales , Segmento Inicial del Axón/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas
18.
PLoS Genet ; 12(12): e1006457, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27911898

RESUMEN

In vertebrate neurons, the axon initial segment (AIS) is specialized for action potential initiation. It is organized by a giant 480 Kd variant of ankyrin G (AnkG) that serves as an anchor for ion channels and is required for a plasma membrane diffusion barrier that excludes somatodendritic proteins from the axon. An unusually long exon required to encode this 480Kd variant is thought to have been inserted only recently during vertebrate evolution, so the giant ankyrin-based AIS scaffold has been viewed as a vertebrate adaptation for fast, precise signaling. We re-examined AIS evolution through phylogenomic analysis of ankyrins and by testing the role of ankyrins in proximal axon organization in a model multipolar Drosophila neuron (ddaE). We find giant isoforms of ankyrin in all major bilaterian phyla, and present evidence in favor of a single common origin for giant ankyrins and the corresponding long exon in a bilaterian ancestor. This finding raises the question of whether giant ankyrin isoforms play a conserved role in AIS organization throughout the Bilateria. We examined this possibility by looking for conserved ankyrin-dependent AIS features in Drosophila ddaE neurons via live imaging. We found that ddaE neurons have an axonal diffusion barrier proximal to the cell body that requires a giant isoform of the neuronal ankyrin Ank2. Furthermore, the potassium channel shal concentrates in the proximal axon in an Ank2-dependent manner. Our results indicate that the giant ankyrin-based cytoskeleton of the AIS may have evolved prior to the radiation of extant bilaterian lineages, much earlier than previously thought.


Asunto(s)
Ancirinas/genética , Segmento Inicial del Axón/metabolismo , Proteínas de Drosophila/genética , Filogenia , Canales de Potasio Shal/genética , Potenciales de Acción/genética , Animales , Ancirinas/biosíntesis , Membrana Celular/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Neuronas/metabolismo , Canales de Potasio Shal/metabolismo
19.
J Neurosci ; 37(48): 11523-11536, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29042434

RESUMEN

Kv2.1 is a major delayed-rectifier voltage-gated potassium channel widely expressed in neurons of the CNS. Kv2.1 localizes in high-density cell-surface clusters in the soma and proximal dendrites as well as in the axon initial segment (AIS). Given the crucial roles of both of these compartments in integrating signal input and then generating output, this localization of Kv2.1 is ideal for regulating the overall excitability of neurons. Here we used fluorescence recovery after photobleaching imaging, mutagenesis, and pharmacological interventions to investigate the molecular mechanisms that control the localization of Kv2.1 in these two different membrane compartments in cultured rat hippocampal neurons of mixed sex. Our data uncover a unique ability of Kv2.1 channels to use two molecularly distinct trafficking pathways to accomplish this. Somatodendritic Kv2.1 channels are targeted by the conventional secretory pathway, whereas axonal Kv2.1 channels are targeted by a nonconventional trafficking pathway independent of the Golgi apparatus. We further identified a new AIS trafficking motif in the C-terminus of Kv2.1, and show that putative phosphorylation sites in this region are critical for the restricted and clustered localization in the AIS. These results indicate that neurons can regulate the expression and clustering of Kv2.1 in different membrane domains independently by using two distinct localization mechanisms, which would allow neurons to precisely control local membrane excitability.SIGNIFICANCE STATEMENT Our study uncovered a novel mechanism that targets the Kv2.1 voltage-gated potassium channel to two distinct trafficking pathways and two distinct subcellular destinations: the somatodendritic plasma membrane and that of the axon initial segment. We also identified a distinct motif, including putative phosphorylation sites, that is important for the AIS localization. This raises the possibility that the destination of a channel protein can be dynamically regulated via changes in post-translational modification, which would impact the excitability of specific membrane compartments.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Vías Secretoras/fisiología , Canales de Potasio Shab/metabolismo , Animales , Segmento Inicial del Axón/química , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Femenino , Células HEK293 , Hipocampo/química , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Neuronas/química , Neuronas/metabolismo , Transporte de Proteínas/fisiología , Ratas , Canales de Potasio Shab/análisis
20.
J Biol Chem ; 292(29): 12192-12207, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28536263

RESUMEN

Subcellular mislocalization of the microtubule-associated protein Tau is a hallmark of Alzheimer disease (AD) and other tauopathies. Six Tau isoforms, differentiated by the presence or absence of a second repeat or of N-terminal inserts, exist in the human CNS, but their physiological and pathological differences have long remained elusive. Here, we investigated the properties and distributions of human and rodent Tau isoforms in primary forebrain rodent neurons. We found that the Tau diffusion barrier (TDB), located within the axon initial segment (AIS), controls retrograde (axon-to-soma) and anterograde (soma-to-axon) traffic of Tau. Tau isoforms without the N-terminal inserts were sorted efficiently into the axon. However, the longest isoform (2N4R-Tau) was partially retained in cell bodies and dendrites, where it accelerated spine and dendrite growth. The TDB (located within the AIS) was impaired when AIS components (ankyrin G, EB1) were knocked down or when glycogen synthase kinase-3ß (GSK3ß; an AD-associated kinase tethered to the AIS) was overexpressed. Using superresolution nanoscopy and live-cell imaging, we observed that microtubules within the AIS appeared highly dynamic, a feature essential for the TDB. Pathomechanistically, amyloid-ß insult caused cofilin activation and F-actin remodeling and decreased microtubule dynamics in the AIS. Concomitantly with these amyloid-ß-induced disruptions, the AIS/TDB sorting function failed, causing AD-like Tau missorting. In summary, we provide evidence that the human and rodent Tau isoforms differ in axodendritic sorting and amyloid-ß-induced missorting and that the axodendritic distribution of Tau depends on AIS integrity.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Corteza Cerebral/metabolismo , Dendritas/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Segmento Inicial del Axón/patología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/patología , Dendritas/patología , Difusión , Embrión de Mamíferos/citología , Eliminación de Gen , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/patología , Mutagénesis Insercional , Neuronas/citología , Neuronas/patología , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Interferencia de ARN , Ratas Wistar , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Repetitivas de Aminoácido , Proteínas tau/antagonistas & inhibidores , Proteínas tau/química , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA