Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.925
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 579(7799): 421-426, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188939

RESUMEN

Bioorthogonal chemistry capable of operating in live animals is needed to investigate biological processes such as cell death and immunity. Recent studies have identified a gasdermin family of pore-forming proteins that executes inflammasome-dependent and -independent pyroptosis1-5. Pyroptosis is proinflammatory, but its effect on antitumour immunity is unknown. Here we establish a bioorthogonal chemical system, in which a cancer-imaging probe phenylalanine trifluoroborate (Phe-BF3) that can enter cells desilylates and 'cleaves' a designed linker that contains a silyl ether. This system enabled the controlled release of a drug from an antibody-drug conjugate in mice. When combined with nanoparticle-mediated delivery, desilylation catalysed by Phe-BF3 could release a client protein-including an active gasdermin-from a nanoparticle conjugate, selectively into tumour cells in mice. We applied this bioorthogonal system to gasdermin, which revealed that pyroptosis of less than 15% of tumour cells was sufficient to clear the entire 4T1 mammary tumour graft. The tumour regression was absent in immune-deficient mice or upon T cell depletion, and was correlated with augmented antitumour immune responses. The injection of a reduced, ineffective dose of nanoparticle-conjugated gasdermin along with Phe-BF3 sensitized 4T1 tumours to anti-PD1 therapy. Our bioorthogonal system based on Phe-BF3 desilylation is therefore a powerful tool for chemical biology; our application of this system suggests that pyroptosis-induced inflammation triggers robust antitumour immunity and can synergize with checkpoint blockade.


Asunto(s)
Preparaciones de Acción Retardada/administración & dosificación , Neoplasias Mamarias Experimentales/inmunología , Piroptosis/inmunología , Animales , Cumarinas/administración & dosificación , Cumarinas/química , Cumarinas/metabolismo , Cumarinas/farmacocinética , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/metabolismo , Preparaciones de Acción Retardada/farmacocinética , Femenino , Proteínas Fluorescentes Verdes/administración & dosificación , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/farmacocinética , Células HeLa , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacocinética , Inflamasomas/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Oligopéptidos/administración & dosificación , Oligopéptidos/química , Oligopéptidos/metabolismo , Oligopéptidos/farmacocinética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas/administración & dosificación , Proteínas/química , Proteínas/metabolismo , Proteínas/farmacocinética , Silanos/administración & dosificación , Silanos/química , Silanos/metabolismo , Silanos/farmacocinética , Linfocitos T/inmunología , Trastuzumab/administración & dosificación , Trastuzumab/química , Trastuzumab/metabolismo , Trastuzumab/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Anal Chem ; 96(22): 9141-9150, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38779970

RESUMEN

Droplet assay platforms have emerged as a significant methodology, providing distinct advantages such as sample compartmentalization, high throughput, and minimal analyte consumption. However, inherent complexities, especially in multiplexed detection, remain a challenge. We demonstrate a novel strategy to fabricate a plasmonic droplet assay platform (PDAP) for multiplexed analyte detection, enabling surface-enhanced Raman spectroscopy (SERS). PDAP efficiently splits a microliter droplet into submicroliter to nanoliter droplets under gravity-driven flow by wettability contrast between two distinct regions. The desired hydrophobicity and adhesive contrast between the silicone oil-grafted nonadhesive hydrophilic zone with gold nanoparticles is attained through (3-aminopropyl) triethoxysilane (APTES) functionalization of gold nanoparticles (AuNPs) using a scotch-tape mask. The wettability contrast surface facilitates the splitting of aqueous droplets with various surface tensions (ranging from 39.08 to 72 mN/m) into ultralow volumes of nanoliters. The developed PDAP was used for the multiplexed detection of Rhodamine 6G (Rh6G) and Crystal Violet (CV) dyes. The limit of detection for 120 nL droplet using PDAP was found to be 134 pM and 10.1 nM for Rh6G and CV, respectively. These results align with those from previously reported platforms, highlighting the comparable sensitivity of the developed PDAP. We have also demonstrated the competence of PDAP by testing adulterant spiked milk and obtained very good sensitivity. Thus, PDAP has the potential to be used for the multiplexed screening of food adulterants.


Asunto(s)
Oro , Nanopartículas del Metal , Espectrometría Raman , Humectabilidad , Espectrometría Raman/métodos , Oro/química , Nanopartículas del Metal/química , Rodaminas/química , Silanos/química , Límite de Detección , Animales , Leche/química , Propiedades de Superficie , Tamaño de la Partícula
3.
Chemistry ; 30(40): e202401435, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38739532

RESUMEN

Artificial organelles serve as functional counterparts to natural organelles, which are primarily employed to artificially replicate, restore, or enhance cellular functions. While most artificial organelles exhibit basic functions, we diverge from this norm by utilizing poly(ferrocenylmethylethylthiocarboxypropylsilane) microcapsules (PFC MCs) to construct multifunctional artificial organelles through water/oil interfacial self-assembly. Within these PFC MCs, enzymatic cascades are induced through active molecular exchange across the membrane to mimic the functions of enzymes in mitochondria. We harness the inherent redox properties of the PFC polymer, which forms the membrane, to facilitate in-situ redox reactions similar to those supported by the inner membrane of natural mitochondria. Subsequent studies have demonstrated the interaction between PFC MCs and living cell including extended lifespans within various cell types. We anticipate that functional PFC MCs have the potential to serve as innovative platforms for organelle mimics capable of executing specific cellular functions.


Asunto(s)
Compuestos Ferrosos , Oxidación-Reducción , Silanos , Compuestos Ferrosos/química , Silanos/química , Orgánulos/química , Orgánulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/química , Humanos , Biomimética/métodos , Materiales Biomiméticos/química , Cápsulas/química , Polímeros/química
4.
Analyst ; 149(13): 3615-3624, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38775016

RESUMEN

Mycophenolate mofetil (MpM) is a medication used to prevent the rejection of transplanted organs, particularly in kidney, heart, and liver transplant surgeries. It is extremely important to be conscious that MpM can raise the risk of severe infections and some cancers if it exceeds the recommended dose while lower doses will result in organ rejections. So, it is essential to monitor the dosage of MpM in real time in the micromolar range. In this work, we have synthesized 3-aminopropyltriethoxysilane (APTES) functionalized nickel cobaltite (NiCo2O4) and this amino functionalization was chosen to enhance the stability and electrochemical activity of NiCo2O4. The enhanced activity of NiCo2O4 was used for developing an electrochemical sensor for the detection of MpM. APTES functionalized NiCo2O4 was coated on carbon cloth and used as the working electrode. Surface functionalization with APTES on NiCo2O4 was aimed at augmenting the adsorption/interaction of MpM due to its binding properties. The developed sensor showed a very low detection limit of 1.23 nM with linear ranges of 10-100 nM and 1-100 µM and its practical applicability was examined using artificial samples of blood serum and cerebrospinal fluid, validating its potential application in real-life scenarios.


Asunto(s)
Carbono , Inmunosupresores , Límite de Detección , Ácido Micofenólico , Nanoestructuras , Níquel , Erizos de Mar , Dispositivos Electrónicos Vestibles , Animales , Níquel/química , Ácido Micofenólico/sangre , Ácido Micofenólico/química , Ácido Micofenólico/análisis , Inmunosupresores/sangre , Inmunosupresores/análisis , Inmunosupresores/química , Carbono/química , Erizos de Mar/química , Nanoestructuras/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Propilaminas/química , Humanos , Cobalto/química , Electrodos , Silanos
5.
Macromol Rapid Commun ; 45(4): e2300563, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985954

RESUMEN

This study aims at evaluating and developing an environmental-friendly and sulfur-free cured ethylene propylene diene monomer (EPDM) composites. Silane grafted EPDM (SiEPDM) composites incorporated with silica is prepared via a solvent-free, one-step reactive mixing process. The silane grafting and silica filler bonding are characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The mechanical properties of the developed composites are examined. The fracture morphology is observed using an environmental scanning electron microscopy. The rheology and thermomechanical properties are evaluated by using a rotational rheometer and dynamic mechanical analyzer. Notably, a robust bonding between silica and the grafted silane is established, yielding a crosslinking network within the composite structure. This phenomenon is substantiated by the observed gel efficiency and rheology behavior. Consequently, a pronounced augmentation of up to 75% in tensile strength and 29% in tear strength are observed in the optimized SiEPDM-silica composites, distinguishing them from their EPDM-silica counterparts. The introduction of paraffin oil contributes to enhanced processability; however, it is concomitant with a reduction in gel efficiency and associated mechanical properties. Furthermore, subsequent UV weathering test unveils that the SiEPDM-silica composites exhibit the highest levels of residual tensile strength and modulus, indicative of their exceptional UV stability.


Asunto(s)
Elastómeros , Metacrilatos , Silanos , Metacrilatos/química , Silanos/química , Resinas Compuestas/química , Dióxido de Silicio/química , Docilidad , Ensayo de Materiales , Etilenos
6.
Macromol Rapid Commun ; 45(18): e2400292, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38837517

RESUMEN

Superhydrophobic materials used for oil-water separation have received wide attention. However, the simple and low-cost strategy for making durable superhydrophobic materials remains a major challenge. Here, this work reports that stable and durable superhydrophobic cotton fabrics can be prepared using a simple two-step impregnation process. Silica nanoparticles are surface modified by hydrolysis condensation of 3-aminopropyltrimethoxysilane (APTMS). 1,4-conjugate addition reaction between the acrylic group of cross-linking agent pentaerythritol triacrylate (PETA) and the amino group of octadecylamine (ODA) forms a covalent cross-linked rough network structure. The long hydrophobic chain of ODA makes the cotton fabric exhibit excellent superhydrophobic properties, and the water contact angle (WCA) of the fabric surface reaches 158°. The modified cotton fabric has good physical and chemical stability, self-cleaning, and anti-fouling. At the same time, the modified fabric shows excellent oil/water separation efficiency (98.16% after 20 cycles) and ultrahigh separation flux (15413.63 L m-2 h-1) due to its superhydrophobicity, superoleophilicity, and inherent porous structure. The method provides a broad prospect in the future diversification applications of oil/water separation and oil spill cleaning.


Asunto(s)
Fibra de Algodón , Interacciones Hidrofóbicas e Hidrofílicas , Aceites , Agua , Agua/química , Aceites/química , Silanos/química , Propiedades de Superficie , Dióxido de Silicio/química , Nanopartículas/química , Tamaño de la Partícula
7.
Bioorg Chem ; 151: 107614, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39002512

RESUMEN

With increasing health awareness of the pathogenic effects of disease-causing microorganisms, interest in and use (of medical textiles, disinfectants in medical devices, etc.) of antimicrobial substances have increased in various applications, such as medical textiles and disinfectants (alcohol-based and nonalcoholic), in medical devices There are several concerns with alcohol-based disinfectants, such as surface deformation of medical devices due to high alcohol content and damage to skin tissue caused by lipid and protein denaturation of cell membranes. Quaternary ammonium compounds (quats) were preferred because they have the potential to prepare water-based disinfectants. In this study, novel (3-chloropropyl)triethoxysilane (CPTMO) and (3-chloropropyl)triethoxysilane (CPTEO) based quaternary ammonium silane compounds (silane-quats) were developed using quats with carbon chain lengths of C12, C14, C16 and C18. Titration (ASTM D2074) was used to calculate the yield of the synthesis and the structures of the products were characterised by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (13C NMR, 1H NMR) and gas chromatography-mass spectrometry (GC-MS).The in vitro antimicrobial activity of the synthesized samples was evaluated against Gram-positive (Staphylococcus aureus (S. aureus), Enterococcus hirae (E. hirae)) and Gram-negative (Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa)) bacteria and fungi (Candida albicans (C. albicans), Aspergillus brasiliensis (A. brasiliensis)) using the minimum inhibitory concentration (MIC) test. According to MIC tests, the silane-quats with the highest antimicrobial effects were dimethylhexadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (SQ3), which had an MIC of < 16 µg/ml (ppm) against E. coli, S. aureus, E. hirae, C. albicans, and A. brasiliensis and 32 µg/ml against P. aeruginosa. The MIC test results also showed antimicrobial activity at least 2 times greater than that of the commercially available disinfectant benzalkonium chloride (BAC). Findings suggest that SQ3 (C16) holds promise as an effective medical disinfectant, presenting a novel approach to combating microbial infections in healthcare settings.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Compuestos de Amonio Cuaternario , Silanos , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/síntesis química , Silanos/química , Silanos/farmacología , Silanos/síntesis química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos
8.
Environ Res ; 252(Pt 2): 118927, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631467

RESUMEN

Effective drug delivery for is the foremost requirement for the complete recovery of the disease. Nanomedicine and nanoengineering has provided so many spaces and ideas for the drug delivery design, whether controlled, targeted, or sustained. Different types of nanocarriers or nanoparticles are aggressively designed for the drug delivery applications. Clay minerals are identified as a one of the potential nanocarrier for the drug delivery. Owing to their biocompatibility and very low cytotoxicity, clay minerals showing effective therapeutic applications. In the present investigation, clay mineral, i.e., Halloysite nano tubes are utilized as a nanocarrier for the delivery of antibiotic cefixime (CFX), a third-generation cephalosporin. The HNT was first functionalized with the sulfuric acid and then further treated with the 3-(aminopropyl)triethoxysilane (APTES). The drug is loaded on three different classifications of HNTs, i.e., Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT and their comparative analysis is established. Different characterization techniques such as X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), Transmission electron microscopy TEM), Brunauer-Emmett-Teller (BET), adsorption studies, and Thermogravimetric analysis (TGA) were performed to evaluate their chemical, structural, morphological, and thermal properties. TGA confirmed the encapsulation efficiency of Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT as 42.65, 52.19, and 53.43%, respectively. Disk diffusion and MTT assay confirmed that the drug loaded HNTs have potential antibacterial activities and less cytotoxicity. The adsorption capacity of CFX with different HNTs are evaluated and Different adsorption and kinetic models have been discussed. Drug release studies shows that APTES-CFX-HNT showing sustained release of cefixime as compared to Bare-CFX-HNT and Acid-CFX-HNT.


Asunto(s)
Antibacterianos , Cefixima , Arcilla , Cefixima/química , Antibacterianos/química , Arcilla/química , Portadores de Fármacos/química , Silicatos de Aluminio/química , Nanopartículas/química , Silanos/química , Espectroscopía Infrarroja por Transformada de Fourier , Propilaminas
9.
J Nanobiotechnology ; 22(1): 347, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898529

RESUMEN

BACKGROUND: Silica nanoparticles (SNPs) have immense potential in biomedical research, particularly in drug delivery and imaging applications, owing to their stability and minimal interactions with biological entities such as tissues or cells. RESULTS: With synthesized and characterized cyanine-dye-doped fluorescent SNPs (CSNPs) using cyanine 3.5, 5.5, and 7 (Cy3.5, Cy5.5, and Cy7). Through systematic analysis, we discerned variations in the surface charge and fluorescence properties of the nanoparticles contingent on the encapsulated dye-(3-aminopropyl)triethoxysilane conjugate, while their size and shape remained constant. The fluorescence emission spectra exhibited a redshift correlated with increasing dye concentration, which was attributed to cascade energy transfer and self-quenching effects. Additionally, the fluorescence signal intensity showed a linear relationship with the particle concentration, particularly at lower dye equivalents, indicating a robust performance suitable for imaging applications. In vitro assessments revealed negligible cytotoxicity and efficient cellular uptake of the nanoparticles, enabling long-term tracking and imaging. Validation through in vivo imaging in mice underscored the versatility and efficacy of CSNPs, showing single-switching imaging capabilities and linear signal enhancement within subcutaneous tissue environment. CONCLUSIONS: This study provides valuable insights for designing fluorescence imaging and optimizing nanoparticle-based applications in biomedical research, with potential implications for targeted drug delivery and in vivo imaging of tissue structures and organs.


Asunto(s)
Carbocianinas , Colorantes Fluorescentes , Nanopartículas , Imagen Óptica , Dióxido de Silicio , Dióxido de Silicio/química , Nanopartículas/química , Carbocianinas/química , Animales , Ratones , Imagen Óptica/métodos , Colorantes Fluorescentes/química , Humanos , Silanos/química , Tamaño de la Partícula , Propilaminas , Benzotiazoles
10.
Biotechnol Lett ; 46(1): 85-95, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064041

RESUMEN

The objective of this study was to obtain sufficient information on the thermal stabilization of a food-grade lipase from Thermomyces lanuginosus (TLL) using the immobilization technique. To do this, a new non-porous support was prepared via the sequential extraction of SiO2 from rice husks, followed by functionalization with (3-aminopropyl) triethoxysilane - 3-APTES (Amino-SiO2), and activation with glutaraldehyde - GA (GA-Amino-SiO2). We evaluated the influence of GA concentration, which varied from 0.25% v v-1 to 4% v v-1, on the immobilization parameters and enzyme thermal stabilization. The thermal inactivation parameters for both biocatalyst forms (soluble or immobilized TLL) were calculated by fitting a non-first-order enzyme inactivation kinetic model to the experimental data. According to the results, TLL was fully immobilized on the external support surface activated with different GA concentrations using an initial protein load of 5 mg g-1. A sharp decrease of hydrolytic activity was observed from 216.6 ± 12.4 U g-1 to 28.6 ± 0.9 U g-1 of after increasing the GA concentration from 0.25% v v-1 to 4.0% v v-1. The support that was prepared using a GA concentration at 0.5% v v-1 provided the highest stabilization of TLL - 31.6-times more stable than its soluble form at 60 °C. The estimations of the thermodynamic parameters, e.g., inactivation energy (Ed), enthalpy (ΔH#), entropy (ΔS#), and the Gibbs energy (ΔG#) values, confirmed the enzyme stabilization on the external support surface at temperatures ranging from 50 to 65 °C. These results show promising applications for this new heterogeneous biocatalyst in industrial processes given the high catalytic activity and thermal stability.


Asunto(s)
Lipasa , Oryza , Propilaminas , Silanos , Lipasa/metabolismo , Dióxido de Silicio , Glutaral , Enzimas Inmovilizadas/metabolismo , Termodinámica , Estabilidad de Enzimas
11.
J Oral Maxillofac Surg ; 82(9): 1147-1162, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38830601

RESUMEN

BACKGROUND: Treated or coated sutures promise to prevent contamination of wounds. PURPOSE: The purpose of the study was to coat surgical sutures with a new quaternary ammonium silane (QAS) antimicrobial compound at two different application temperatures and then to evaluate the resulting structural, physical, mechanical, and biological properties. STUDY DESIGN, SETTING, SAMPLE: In vitro and in vivo studies were conducted using male albino Wistar rats approved by the Joint Ethical Committee of IMU and Postgraduate Medical Institute, Lahore. Only suture samples, coated uniformly with verified presence of the compound and of adequate length were used. Samples which were not coated uniformly and with inadequate length or damaged were excluded. PREDICTOR VARIABLE: Predictor variables were sutures with and without QAS coatings and different temperatures. Sutures were coated with QAS at 0.5 and 1.0% wt/vol using the dip coating technique and sutures with and without QAS coating were tested at 25 and 40 °C temperatures. MAIN OUTCOME VARIABLE(S): Outcome variables of structural and physico-mechanical properties of QAS-coated and non-coated sutures were measured using Fourier transform infrared spectroscopy (for structural changes), confocal laser and scanning electron (for diameter changes), and tensile strength/modulus (for mechanical testing). Biologic outcome variables were tested (bacterial viability); macrophage cultures from Wistar rats were tested (M1/M2 polarization detecting IL-6 and IL-10). Macrophage cells were analyzed with CD80+ (M1) and CD163+ (M2). Chemotaxis index was calculated as a ratio of quantitative fluorescence of cells. COVARIATES: Not applicable. ANALYSES: Ordinal data among groups were compared using the Wilcoxon Mann-Whitney U test along with the comparison of histological analysis using the Wilcoxon Sign-rank test (P < .05). RESULTS: Fourier transform infrared spectroscopy peak at 1490 cm-1 confirmed the presence of QAS on suture's surfaces with a significant increase (P < .05) in diameter (0.99 ± 0.5-mm) and weight (0.77 ± 0.02-mg) observed for 1% QAS groups treated at 40 °C. Non-coated samples heated at 25 °C had significantly (P < .05) less diameters (0.22 ± 0.03-mm) and weights (0.26 ± 0.06-mg). Highest tensile strength/modulus was observed for 0.5% QAS-coated samples which also had significantly higher antibacterial characteristics than other sutures (P < .05). QAS-coated sutures significantly increased M1 and M2 markers. CONCLUSION AND RELEVANCE: QAS coating conferred antibacterial action properties without compromising the physical and mechanical properties of the suture.


Asunto(s)
Materiales Biocompatibles Revestidos , Ratas Wistar , Silanos , Suturas , Animales , Ratas , Masculino , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Silanos/química , Silanos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Ensayo de Materiales , Resistencia a la Tracción , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/química , Antiinfecciosos/farmacología , Microscopía Electrónica de Rastreo , Microscopía Confocal , Propiedades de Superficie
12.
Food Microbiol ; 123: 104586, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038892

RESUMEN

Wood is reportedly more difficult to maintain in hygienic condition versus other food contact materials, yet its use in produce packing and retail warrants efforts to reduce the risk of microbial pathogen contamination and attachment. This study characterized antifouling capabilities of fluorinated silanes applied to wood used in fresh edible produce handling to render the wood superhydrophobic and less supportive of bacterial pathogen attachment. Pine and oak cubic coupon surfaces were treated with 1% (w/w) silane or left untreated. Treated and untreated coupons were inoculated with Salmonella enterica or Listeria monocytogenes and held to facilitate pathogen attachment for 1, 4, or 8 h. Silane treatment of wood produced significant reductions in the proportions of strongly attaching cells for both pathogens versus loosely attaching cells (P < 0.01). Salmonella attachment demonstrated a dependency on wood treatment; silane-treated wood supported a lower fraction of strongly adhering cells (1.87 ± 1.24 log CFU/cm2) versus untreated wood (3.72 ± 0.67 log CFU/cm2). L. monocytogenes demonstrated significant declines in strongly attaching cells during extended exposure to silane-treated wood, from 7.59 ± 0.14 to 5.27 ± 0.68 log CFU/cm2 over 8 h post-inoculation. Microscopic analysis demonstrated silane treatment increased the surface roughness of both woods, leading to superhydrophobic conditions on wood surfaces, consequently decreasing strong attachment of pathogenic bacteria.


Asunto(s)
Adhesión Bacteriana , Interacciones Hidrofóbicas e Hidrofílicas , Listeria monocytogenes , Salmonella enterica , Silanos , Madera , Madera/microbiología , Madera/química , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/fisiología , Adhesión Bacteriana/efectos de los fármacos , Salmonella enterica/efectos de los fármacos , Salmonella enterica/crecimiento & desarrollo , Humanos , Silanos/farmacología , Silanos/química , Microbiología de Alimentos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Embalaje de Alimentos/métodos , Recuento de Colonia Microbiana , Quercus/microbiología , Quercus/química , Pinus/microbiología
13.
Biomed Chromatogr ; 38(5): e5836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308120

RESUMEN

Apple, a major fruit of temperate Himalayas, is sprayed with chemical pesticides around 12 times during the cropping season. Various systemic and contact fungicides are applied for the management of major diseases. In order to manage disease, flusilazole 40 EC is frequently used. However, excessive chemical application has been found to be detrimental for consumer safety. Keeping in view consumer safety, risk assessment, the half-life and waiting period for flusilazole 40 EC were evaluated on the Red Velox variety of apple. The QuEChERS (quick, easy, cheap, effective, rugged and safe) method and high-performance liquid chromatography were adapted for sample processing and analysis, respectively. The recovery percentages of flusilazole at three fortification levels (0.04, 0.09 and 0.50 mg kg-1) were 98.85, 99.83 and 98.98%, respectively. Flusilazole at the recommended dose (80 g a.i. ha-1) left an initial deposit of 0.733 mg kg-1, which dissipated by 93.45% in 60 days and was non-detectable beyond this period. Meanwhile flusilazole at double the recommended dose (160 g a.i. ha-1) left an initial deposit of 0.913 mg kg-1, which dissipated by 93.43% in 70 days and was non-detectable beyond this period. Based on the maximum residue limit of 0.3 mg kg-1 as prescribed by the Codex Alimentarius Commission, a waiting period of 28.74 and 46.03 days was recorded for single and double doses, respectively. Moreover, in order to assess the consumer risk, theoretical maximum residue contributions (TMRCs) were derived using flusilazole residues (average and maximum) recorded at various time intervals and compared with the maximum permissible intake, which was found to be 0.42 mg per person per day. Based on the average per capita daily consumption of 6.76 g apple in India, the TMRC values were computed. Although the values of TMRC decreased below maximum permissible intake at the first day after application, indicating minimal consumer health risks, fruits sprayed with a double dose of flusilazole carried the risk even up to the tenth day after flusilazole application. The results of the present study will be valuable for safe and timely use of flusilazole on apple.


Asunto(s)
Fungicidas Industriales , Límite de Detección , Malus , Residuos de Plaguicidas , Silanos , Triazoles , Malus/química , Residuos de Plaguicidas/análisis , Cromatografía Líquida de Alta Presión/métodos , Triazoles/análisis , Triazoles/química , Fungicidas Industriales/análisis , Reproducibilidad de los Resultados , Medición de Riesgo , Modelos Lineales , Contaminación de Alimentos/análisis
14.
Ecotoxicol Environ Saf ; 283: 116859, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137466

RESUMEN

The developmental toxicity and human health risks of triazole fungicides (TFs) have attracted worldwide attention due to the ability to enter the human body in a variety of ways. Nevertheless, the specific mechanism by which TFs exert remains incompletely understood. Given that retinoic acid (RA) signaling pathway are closely related to development, this study aimed to screen and identify developmentally disabled chemicals in commonly used TFs and to reveal the potential effects of TFs on developmental retardation through the RA signaling pathway in mouse embryonic stem cells (mESCs). Specifically, six typical TFs (myclobutanil, tebuconazole, hexaconazole, propiconazole, difenoconazole, and flusilazole) were exposed through the construction of an embryoid bodies (EBs)-based in vitro global differentiation models. Our results clarified that various TFs disturbed lineage commitment during early embryonic development. Crucially, the activation of RA signaling pathway, which alters the expression of key genes and interferes the transport and metabolism of retinol, may be responsible for this effect. Furthermore, molecular docking, molecular dynamics simulations, and experiments using a retinoic acid receptor α inhibitor provide evidence supporting the potential modulatory role of the retinoic acid signaling pathway in developmental injury. The current study offers new insights into the TFs involved in the RA signaling pathway that interfere with the differentiation process of mESCs, which is crucial for understanding the impact of TFs on pregnancy and early development.


Asunto(s)
Diferenciación Celular , Fungicidas Industriales , Transducción de Señal , Tretinoina , Triazoles , Triazoles/toxicidad , Fungicidas Industriales/toxicidad , Diferenciación Celular/efectos de los fármacos , Tretinoina/toxicidad , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Simulación del Acoplamiento Molecular , Dioxolanos/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Nitrilos , Silanos
15.
Pestic Biochem Physiol ; 205: 106133, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39477585

RESUMEN

Northern corn leaf blight (NCLB) infected by Setosphaeria turcica is a devastating disease of corn worldwide. Flusilazole is a broad-spectrum triazole fungicide. However, its resistance risk and field efficiency in controlling NCLB are still unknown. The present research evaluated the antifungal activity of flusilazole against 101 S. turcica isolates, and their EC50 values ranged from 0.0013 to 0.0466 µg/mL, with a mean of 0.0157 µg/mL. Seven S. turcica mutants resistant to flusilazole were obtained from two wild-type isolates by fungicide adaptation. After 10 consecutive transfers on PDA medium without fungicide, their resistance decreased. Cross-resistance was not existed between flusilazole and fluazinam, pyraclostrobin, amobam, epoxiconazole, or fluxapyroxad. Compared to the wild-type isolates, seven flusilazole-resistant mutants showed reduced biological fitness. No point mutation was detected, however, over-expression of StCYP51 and StatrD genes were detected in the resistant mutants. In addition, in the field experiment, flusilazole exhibited over 85 % efficacy against NCLB, significantly higher than amobam. In summary, these results suggested that the resistance risk of S. turcica to flusilazole was low, and the over-expression of StCYP51 and StatrD might be related to the flusilazole resistance against S. turcica. Flusilazole showed great potential as an alternative fungicide for controlling NCLB.


Asunto(s)
Ascomicetos , Farmacorresistencia Fúngica , Fungicidas Industriales , Enfermedades de las Plantas , Triazoles , Zea mays , Triazoles/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Fungicidas Industriales/farmacología , Zea mays/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Farmacorresistencia Fúngica/genética , Estrobilurinas/farmacología , Mutación , Aminopiridinas , Compuestos Epoxi , Silanos
16.
Chem Pharm Bull (Tokyo) ; 72(8): 772-774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39198182

RESUMEN

We report chemoselective hydrogenation of α,ß-unsaturated anilides catalyzed by the palladium-polymethylhydrosiloxane (hydrosilane) system. Under this condition, C-C double bonds are selectively reduced while other reducible groups such as acetyl groups, nitro groups, nitriles, benzyl ethers, and halogens are largely tolerated. This chemoselective hydrogenation is promising for the development of efficient synthetic routes for multi-functional compounds.


Asunto(s)
Paladio , Hidrogenación , Paladio/química , Catálisis , Estructura Molecular , Silanos/química
17.
Chem Pharm Bull (Tokyo) ; 72(10): 890-893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39401891

RESUMEN

We studied the reaction pathway of our reductive Heck hydroarylation using a palladium catalyst and a hydrosilane. A key question to verify the reaction mechanism was which active species, Ar-PdII-I or Si-PdII-H, first performs migratory insertion into the alkenes. Identifying this step is crucial to elucidate the reaction mechanism. To address this, we designed a substrate containing two trisubstituted alkenes and tested its product. The results suggest that the migratory insertion of Ar-PdII-I into the alkene is the initial step of the reaction. Furthermore, this reaction can construct a quaternary carbon center and give high yields with high functional group tolerance.


Asunto(s)
Alquenos , Paladio , Paladio/química , Alquenos/química , Catálisis , Estereoisomerismo , Estructura Molecular , Oxidación-Reducción , Silanos/química
18.
Plant Dis ; 108(3): 599-607, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37682223

RESUMEN

Walnut is cultivated around the world for its precious woody nut and edible oil. Recently, walnut infected by Colletotrichum spp. resulted in a great yield and quality loss. In August and September 2014, walnut fruits with anthracnose were sampled from two commercial orchards in Shaanxi and Liaoning provinces, and five representative isolates were used in this study. To identify the pathogen properly, four genes per region (internal transcribed spacer, glyceraldehyde-3-phosphate dehydrogenase, actin, and chitin synthase) were sequenced and used in phylogenetic studies. Based on multilocus phylogenetic analysis, five isolates clustered with Colletotrichum fioriniae, including its ex-type, with 100% bootstrap support. The results of multilocus phylogenetic analyses, morphology, and pathogenicity confirmed that C. fioriniae was one of the walnut anthracnose pathogens in China. All 13 fungicides tested inhibited mycelial growth and spore germination. Flusilazole, fluazinam, prochloraz, and pyraclostrobin showed the strongest suppressive effects on the mycelial growth than the others, the average EC50 values ranged from 0.09 to 0.40 µg/ml, and there was not any significant difference (P < 0.05). Pyraclostrobin, thiram, and azoxystrobin were the most effective fungicides on spore germination (P < 0.05), and the EC50 values ranged from 0.01 to 0.44 µg/ml. Pyraclostrobin, azoxystrobin, fluazinam, flusilazole, mancozeb, thiram, and prochloraz exhibited a good control effect on walnut anthracnose caused by C. fioriniae, and preventive activities were greater than curative activities. Pyraclostrobin at 250 a.i. µg/ml and fluazinam at 500 a.i. µg/ml provided the highest preventive and curative efficacy, and the values ranged from 81.3 to 82.2% and from 72.9 to 73.6%, respectively. As a consequence, mancozeb and thiram could be used at the preinfection stage, and pyraclostrobin, azoxystrobin, flusilazole, fluazinam, and prochloraz could be used at the early stage for effective prevention and control of walnut anthracnose caused by C. fioriniae. The results will provide more significant instructions for controlling the disease effectively in northern China.


Asunto(s)
Aminopiridinas , Fungicidas Industriales , Juglans , Maneb , Pirimidinas , Silanos , Estrobilurinas , Triazoles , Zineb , Fungicidas Industriales/farmacología , Nueces , Tiram , Filogenia , China
19.
Mikrochim Acta ; 191(4): 181, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446252

RESUMEN

Silica nanoparticles (SiNPs) with a chemically modified surface typically have a complicated chemical composition, which can significantly differ from their intended design. In this study, we systematically studied the effects of two surface modification methods on active-targeting of intracellular organelles of SiNPs: (1) the widely used step-by-step approach, which involves modifying SiNPs in two steps, i.e., the outer surface of SiNPs was firstly modified with amino groups and then these amino groups were linked with targeting groups, and (2) a newly developed one-step approach in which the ligand-silane complex is initially synthesized, followed by chemically immobilizing the complex on the surface of SiNPs. In the one-step approach, the molar ratio of reactants was precisely tuned so that there are no reactive groups left on the outer surface of SiNPs. Two essential organelles, mitochondria and the nucleus, were selected to compare the targeting performances of SiNPs synthesized via these two approaches. By characterizing physicochemical properties, including structural properties, the number of amino groups, surface charge, polydispersity, and cell colocalization, we demonstrated that SiNPs synthesized via the one-step approach with no residual linkage groups on their surface showed significantly improved mitochondria- and nucleus-targeting performances. This precise control of surface properties allows for optimized biological behavior and active-targeting efficiency of SiNPs. We anticipate that such simple and efficient synthetic strategies will enable the synthesis of effective SiNPs for active-targeting organelles in various biological applications.


Asunto(s)
Mitocondrias , Nanopartículas , Colorantes , Silanos , Dióxido de Silicio
20.
Mikrochim Acta ; 191(8): 472, 2024 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028442

RESUMEN

A Ti3C2TxMXene-based biosensor has been developed and the photocatalytic atom transfer radical polymerization (photo ATRP) amplification strategy applied to detect target miRNA-21 (tRNA). Initially, Ti3C2TxMXene nanosheets were synthesized from the Ti3AlC2 MAX precursor via selective aluminum etching. Then, functionalization of Ti3C2TxMXene nanosheets with 3-aminopropyl triethoxysilane (APTES) via silylation reactions to facilitate covalent bonding with hairpin DNA biomolecules specifically designed for tRNA detection. Upon binding with the tRNA, the hairpin DNA liberated the azide (N3) group, initiating a click reaction to affix to the photo ATRP initiator. Through the ATRP photoreaction, facilitated by an organic photoredox catalyst and light, a significant amount of ferrocenyl methyl methacrylate (FMMA) monomer was immobilized on the electrode. Therefore, the electrochemical signal is amplified. The electrochemical efficacy of the biosensor was assessed using square wave voltammetry (SWV). Under optimized conditions, the biosensor demonstrated remarkable sensitivity in detecting tRNA, with a linear detection range from 0.01 fM to 10 pM and a detection limit of 2.81 aM. The findings elucidate that the developed biosensor, in conjunction with the photo ATRP strategy, offers reproducibility, stability, and increased sensitivity, underscoring its potential applications within the experimental medical sector of the biomolecular industry.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , MicroARNs , Titanio , Técnicas Biosensibles/métodos , MicroARNs/análisis , Técnicas Electroquímicas/métodos , Titanio/química , Catálisis , Procesos Fotoquímicos , Humanos , Polimerizacion , Silanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA