Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 629(8010): 165-173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632398

RESUMEN

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Asunto(s)
Antibiosis , Proteínas Bacterianas , Toxinas Bacterianas , Streptomyces , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibiosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/ultraestructura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacología , Microscopía por Crioelectrón , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestructura , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efectos de los fármacos , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efectos de los fármacos , Streptomyces griseus/genética , Streptomyces griseus/crecimiento & desarrollo , Streptomyces griseus/metabolismo
2.
Nucleic Acids Res ; 52(8): 4185-4197, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38349033

RESUMEN

Zur is a Fur-family metalloregulator that is widely used to control zinc homeostasis in bacteria. In Streptomyces coelicolor, Zur (ScZur) acts as both a repressor for zinc uptake (znuA) gene and an activator for zinc exporter (zitB) gene. Previous structural studies revealed three zinc ions specifically bound per ScZur monomer; a structural one to allow dimeric architecture and two regulatory ones for DNA-binding activity. In this study, we present evidence that Zur contains a fourth specific zinc-binding site with a key histidine residue (H36), widely conserved among actinobacteria, for regulatory function. Biochemical, genetic, and calorimetric data revealed that H36 is critical for hexameric binding of Zur to the zitB zurbox and further binding to its upstream region required for full activation. A comprehensive thermodynamic model demonstrated that the DNA-binding affinity of Zur to both znuA and zitB zurboxes is remarkably enhanced upon saturation of all three regulatory zinc sites. The model also predicts that the strong coupling between zinc binding and DNA binding equilibria of Zur drives a biphasic activation of the zitB gene in response to a wide concentration change of zinc. Similar mechanisms may be pertinent to other metalloproteins, expanding their response spectrum through binding multiple regulatory metals.


Asunto(s)
Proteínas Bacterianas , Streptomyces coelicolor , Zinc , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Regulación Bacteriana de la Expresión Génica , Histidina/metabolismo , Histidina/química , Unión Proteica , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Zinc/metabolismo
3.
Nucleic Acids Res ; 52(8): 4604-4626, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38348908

RESUMEN

Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , ARN Bacteriano , Factor sigma , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN no Traducido , Factor sigma/metabolismo , Factor sigma/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Transcripción Genética
4.
J Bacteriol ; 206(3): e0042823, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38353530

RESUMEN

In Streptomyces, multiple paralogs of SsgA-like proteins (SALPs) are involved in spore formation from aerial hyphae. However, the functions of SALPs have not yet been elucidated in other actinobacterial genera. Here, we report the primary function of an SsgB ortholog (AmSsgB) in Actinoplanes missouriensis, which develops terminal sporangia on the substrate mycelia via short sporangiophores. Importantly, AmSsgB is the sole SALP in A. missouriensis. The transcription of AmssgB was upregulated during sporangium formation, consistent with our previous findings that AmssgB is a member of the AmBldD regulon. The AmssgB null mutant (ΔAmssgB) strain formed non-globose irregular structures on the substrate mycelium. Transmission electron microscopy revealed that the irregular structures contained abnormally septate hypha-like cells, without an intrasporangial matrix. These phenotypic changes were restored by complementation with AmssgB. Additionally, analysis of the heterologous expression of seven SALP-encoding genes from Streptomyces coelicolor A3(2) (ssgA-G) in the ΔAmssgB strain revealed that only ssgB could compensate for AmSsgB deficiency. This indicated that SsgB of S. coelicolor A3(2) and AmSsgB have comparable functions in A. missouriensis. In contrast to the ΔAmssgB strain, the ftsZ-disrupted strain showed a severe growth defect and produced small sporangium-like structures that swelled to some extent. These findings indicate that AmSsgB is crucial for the early stages of sporangium formation, not for spore septum formation in the late stages. We propose that AmSsgB is involved in sporangium formation by promoting the expansion of the "presporangium" structures formed on the tips of the substrate hyphae. IMPORTANCE: SsgB has been proposed as an archetypical SsgA-like protein with an evolutionarily conserved function in the morphological development of spore-forming actinomycetes. SsgB in Streptomyces coelicolor A3(2) is involved in spore septum formation. However, it is unclear whether this is the primary function of SsgBs in actinobacteria. This study demonstrated that the SsgB ortholog (AmSsgB) in Actinoplanes missouriensis is essential for sporangium expansion, which does not seem to be related to spore septum formation. However, the heterologous expression of ssgB from S. coelicolor A3(2) restored morphological abnormalities in the ΔAmssgB mutant. We propose that the primary function of SsgB is to initiate sporulation in differentiating cells (e.g., aerial hyphae in Streptomyces and "presporangium" cells in A. missouriensis) although its molecular mechanism remains unknown.


Asunto(s)
Actinobacteria , Actinoplanes , Streptomyces coelicolor , Streptomyces , Esporangios/metabolismo , Streptomyces/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Actinobacteria/metabolismo , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo
5.
Microb Cell Fact ; 23(1): 149, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790014

RESUMEN

BACKGROUND: Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS: We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION: Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.


Asunto(s)
Productos Biológicos , Ingeniería Metabólica , Familia de Multigenes , Policétidos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Productos Biológicos/metabolismo , Policétidos/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Vías Biosintéticas/genética
6.
Appl Microbiol Biotechnol ; 108(1): 306, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656376

RESUMEN

The Streptomyces genus comprises Gram-positive bacteria known to produce over two-thirds of the antibiotics used in medical practice. The biosynthesis of these secondary metabolites is highly regulated and influenced by a range of nutrients present in the growth medium. In Streptomyces coelicolor, glucose inhibits the production of actinorhodin (ACT) and undecylprodigiosin (RED) by a process known as carbon catabolite repression (CCR). However, the mechanism mediated by this carbon source still needs to be understood. It has been observed that glucose alters the transcriptomic profile of this actinobacteria, modifying different transcriptional regulators, including some of the one- and two-component systems (TCSs). Under glucose repression, the expression of one of these TCSs SCO6162/SCO6163 was negatively affected. We aimed to study the role of this TCS on secondary metabolite formation to define its influence in this general regulatory process and likely establish its relationship with other transcriptional regulators affecting antibiotic biosynthesis in the Streptomyces genus. In this work, in silico predictions suggested that this TCS can regulate the production of the secondary metabolites ACT and RED by transcriptional regulation and protein-protein interactions of the transcriptional factors (TFs) with other TCSs. These predictions were supported by experimental procedures such as deletion and complementation of the TFs and qPCR experiments. Our results suggest that in the presence of glucose, the TCS SCO6162/SCO6163, named GarR/GarS, is an important negative regulator of the ACT and RED production in S. coelicolor. KEY POINTS: • GarR/GarS is a TCS with domains for signal transduction and response regulation • GarR/GarS is an essential negative regulator of the ACT and RED production • GarR/GarS putatively interacts with and regulates activators of ACT and RED.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Streptomyces coelicolor , Antraquinonas/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoisocromanquinonas , Represión Catabólica , Glucosa/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/biosíntesis , Prodigiosina/metabolismo , Metabolismo Secundario/genética , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Agric Food Chem ; 72(11): 6019-6027, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38447069

RESUMEN

Malachite green (MG) poses a formidable threat to ecosystems and human health. Laccase emerges as a promising candidate for MG degradation, prompting an investigation into the catalytic activity modulation of a small laccase (SLAC) from Streptomyces coelicolor, with a focus on amino acid position 228. Through saturation mutagenesis, five mutants with a 50% increase in the specific activity were generated. Characterization revealed notable properties, Km of E228F was 8.8% of the wild type (WT), and E288T exhibited a 133% kcat compared to WT. Structural analyses indicated improved hydrophobicity and electrostatic potential on the mutants' surfaces, with the stable E228F-ABTS complex exhibiting reduced flexibility, possibly contributing to the observed decrease in turnover rate. Mutants demonstrated enhanced MG decolorization, particularly E228G. Site 228 acts as a crucial functional control switch, suggesting its potential role in SLAC engineering. This study provides insights into laccase modulation and offers promising avenues for enzymatic bioremediation applications.


Asunto(s)
Lacasa , Streptomyces coelicolor , Humanos , Lacasa/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Ecosistema , Biodegradación Ambiental
8.
Microb Biotechnol ; 17(8): e14538, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39093579

RESUMEN

Chassis strains, derived from Streptomyces coelicolor M145, deleted for one or more of its four main specialized metabolites biosynthetic pathways (CPK, CDA, RED and ACT), in various combinations, were constructed for the heterologous expression of specialized metabolites biosynthetic pathways of various types and origins. To determine consequences of these deletions on the metabolism of the deleted strains comparative lipidomic and metabolomic analyses of these strains and of the original strain were carried out. These studies unexpectedly revealed that the deletion of the peptidic clusters, RED and/or CDA, in a strain deleted for the ACT cluster, resulted into a great increase in the triacylglycerol (TAG) content, whereas the deletion of polyketide clusters, ACT and CPK had no impact on TAG content. Low or high TAG content of the deleted strains was correlated with abundance or paucity in amino acids, respectively, reflecting high or low activity of oxidative metabolism. Hypotheses based on what is known on the bio-activity and the nature of the precursors of these specialized metabolites are proposed to explain the unexpected consequences of the deletion of these pathways on the metabolism of the bacteria and on the efficiency of the deleted strains as chassis strains.


Asunto(s)
Vías Biosintéticas , Eliminación de Gen , Metaboloma , Streptomyces coelicolor , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Vías Biosintéticas/genética , Lipidómica , Triglicéridos/metabolismo , Triglicéridos/biosíntesis
9.
J Biotechnol ; 386: 1-9, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38479473

RESUMEN

(-)-Geosmin has high demand in perfumes and cosmetic products for its earthy congenial aroma. The current production of (-)-geosmin is either by distillation of sun-baked soil or by inefficient chemical synthesis because of the presence of multiple chiral centers. Fermentation processes are not viable as the titers of the Streptomyces sp. based processes are low. This work presents an alternative route by the heterologous synthesis of (-)-geosmin in Saccharomyces cerevisiae. The enzyme involved is the bifunctional geosmin synthase that catalyzes the conversion of farnesyl diphosphate to germacradienol and germacradienol to geosmin. This study evaluated the activity of many orthologs of geosmin synthase when expressed heterologously in S. cerevisiae. When the well-characterized CAB41566 from Streptomyces coelicolor origin was tested, germacradienol and germacrene D were detected but no geosmin. Bioinformatic analysis based on high/low identities to N-terminal and C-terminal domains of CAB41566 was carried out to identify different orthologs of geosmin synthase proteins from different bacterial and fungal origins. ADO68918 of Stigmatella aurantiaca origin showed the best activity among the tested orthologs, not only in terms of geosmin production but also an order of magnitude higher total abundance of the products of geosmin synthase as compared to CAB41566. This study successfully demonstrated the production of (-)-geosmin in S. cerevisiae and offers an alternative, sustainable and environment-friendly approach to producing (-)-geosmin.


Asunto(s)
Streptomyces coelicolor , Streptomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Streptomyces/metabolismo , Streptomyces coelicolor/metabolismo , Naftoles/química , Naftoles/metabolismo
10.
Biotechnol J ; 19(2): e2300402, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403403

RESUMEN

In this study, a glycoside hydrolase family 46 chitosanase from Streptomyces coelicolor A3(2) M145 was firstly cloned and expressed in Pichia pastoris GS115 (P. pastoris GS115). The recombinant enzyme (CsnA) showed maximal activity at pH 6.0 and 65°C. Both thermal stability and pH stability of CsnA expressed in P. pastoris GS115 were significantly increased compared with homologous expression in Streptomyces coelicolor A3(2). A stable chitosanase activity of 725.7 ± 9.58 U mL-1 was obtained in fed-batch fermentation. It's the highest level of CsnA from Streptomyces coelicolor expressed in P. pastoris so far. The hydrolytic process of CsnA showed a time-dependent manner. Chitosan oligosaccharides (COSs) generated by CsnA showed antifungal activity against Fusarium oxysporum sp. cucumerinum (F. oxysporum sp. cucumerinum). The secreted expression and hydrolytic performance make the enzyme a desirable biocatalyst for industrial controllable production of chitooligosaccharides with specific degree of polymerization, which have potential to control fungi that cause important crop diseases.


Asunto(s)
Saccharomycetales , Streptomyces coelicolor , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Proteínas Recombinantes/metabolismo , Pichia/genética , Pichia/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo
11.
PLoS One ; 19(8): e0308684, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121077

RESUMEN

The biosynthetic pathway of actinorhodin in Streptomyces coelicolor A3(2) has been studied for decades as a model system of type II polyketide biosynthesis. The actinorhodin biosynthetic gene cluster includes a gene, actVI-orfA, that encodes a protein that belongs to the nuclear transport factor-2-like (NTF-2-like) superfamily. The function of this ActVI-ORFA protein has been a long-standing question in this field. Several hypothetical functions, including pyran ring cyclase, enzyme complex stability enhancer, and gene transcription regulator, have been proposed for ActVI-ORFA in previous studies. However, although the recent structural analysis of ActVI-ORFA revealed a solvent-accessible cavity, the protein displayed structural differences to the well-characterized cyclase SnoaL and did not possess a DNA-binding domain. The obtained crystal structure facilitates an inspection of the previous hypotheses regarding the function of ActVI-ORFA. In the present study, we investigated the effects of a series of actVI-orfA test plasmids with different mutations in an established vector/host system. Time-course analysis of dynamic metabolism profiles demonstrated that ActVI-ORFA prevented formation of shunt metabolites and may have a metabolic flux directing function, which shepherds the flux of unstable intermediates towards actinorhodin. The expression studies resulted in the isolation and structure elucidation of two new shunt metabolites from the actinorhodin pathway. Next, we utilized computational modeling to probe the active site of ActVI-ORFA and confirmed the importance of residues R76 and H78 in the flux directing functionality by expression studies. This is the first time such a function has been observed for a member of NTF-2-like superfamily in Streptomyces secondary metabolism.


Asunto(s)
Antraquinonas , Proteínas Bacterianas , Streptomyces coelicolor , Antraquinonas/metabolismo , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Familia de Multigenes , Mutación , Benzoisocromanquinonas
12.
Int J Biol Macromol ; 268(Pt 1): 131544, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614173

RESUMEN

Single-stranded DNA-binding proteins (SSB) are crucial in DNA metabolism. While Escherichia coli SSB is extensively studied, the significance of its C-terminal domain has only recently emerged. This study explored the significance of C-domains of two paralogous Ssb proteins in S. coelicolor. Mutational analyses of C-domains uncovered a novel role of SsbA during sporulation-specific cell division and demonstrated that the C-tip is non-essential for survival. In vitro methods revealed altered biophysical and biochemical properties of Ssb proteins with modified C-domains. Determined hydrodynamic properties suggested that the C-domains of SsbA and SsbB occupy a globular position proposed to mediate cooperative binding. Only SsbA was found to form biomolecular condensates independent of the C-tip. Interestingly, the truncated C-domain of SsbA increased the molar enthalpy of unfolding. Additionally, calorimetric titrations revealed that C-domain mutations affected ssDNA binding. Moreover, this analysis showed that the SsbA C-tip aids binding most likely by regulating the position of the flexible C-domain. It also highlighted ssDNA-induced conformational mobility restrictions of all Ssb variants. Finally, the gel mobility shift assay confirmed that the intrinsically disordered linker is essential for cooperative binding of SsbA. These findings highlight the important role of the C-domain in the functioning of SsbA and SsbB proteins.


Asunto(s)
ADN de Cadena Simple , Proteínas de Unión al ADN , Unión Proteica , Streptomyces coelicolor , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN de Cadena Simple/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Mutación , Fenómenos Biofísicos , Termodinámica
13.
Res Microbiol ; 175(5-6): 104201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38522628

RESUMEN

Unlike Bacillus subtilis, Streptomyces coelicolor contains nine SigB homologues of the stress-response sigma factor SigB. By using a two-plasmid system, we previously identified promoters recognized by these sigma factors. Almost all promoters were recognized by several SigB homologues. However, no specific sequences of these promoters were found. One of these promoters, ssgBp, was selected to examine this cross-recognition in the native host. It controls the expression of the sporulation-specific gene ssgB. Using a luciferase reporter, the activity of this promoter in S. coelicolor and nine mutant strains lacking individual sigB homologous genes showed that sgBp is dependent on three sigma factors, SigH, SigN, and SigI. To determine which nucleotides in the-10 region are responsible for the selection of a specific SigB homologue, promoters mutated at the last three nucleotide positions were tested in the two-plasmid system. Some mutant promoters were specifically recognized by a distinct set of SigB homologues. Analysis of these mutant promoters in the native host showed the role of these nucleotides. A conserved nucleotide A at position 5 was essential for promoter activity, and two variable nucleotides at positions 4 and 6 were responsible for the partial selectivity of promoter recognition by SigB homologues.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Factor sigma , Esporas Bacterianas , Streptomyces coelicolor , Transcripción Genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Plásmidos/genética , Secuencia de Bases
14.
Res Microbiol ; 175(4): 104177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38159786

RESUMEN

S. lividans and S. coelicolor are phylogenetically closely related strains with different abilities to produce the same specialized metabolites. Previous studies revealed that the strong antibiotic producer, S. coelicolor, had a lower ability to assimilate nitrogen and phosphate than the weak producer, Streptomyces lividans, and this resulted into a lower growth rate. A comparative proteomic dataset was used to establish the consequences of these nutritional stresses on the abundance of proteins of the translational apparatus of these strains, grown in low and high phosphate availability. Our study revealed that most proteins of the translational apparatus were less abundant in S. coelicolor than in S. lividans whereas it was the opposite for ET-Tu 3 and a TrmA-like methyltransferase. The expression of the latter being known to be under the positive control of the stringent response whereas that of the other ribosomal proteins is under its negative control, this indicated the occurrence of a strong activation of the stringent response in S. coelicolor. Furthermore, in S. lividans, ribosomal proteins were more abundant in phosphate proficiency than in phosphate limitation suggesting that a limitation in phosphate, that was also shown to trigger RelA expression, contributes to the induction of the stringent response.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Fosfatos , Streptomyces coelicolor , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crecimiento & desarrollo , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fosfatos/metabolismo , Streptomyces lividans/metabolismo , Streptomyces lividans/genética , Proteoma , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Biosíntesis de Proteínas , Nitrógeno/metabolismo , Proteómica , Estrés Fisiológico
15.
ACS Synth Biol ; 13(5): 1523-1536, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38662967

RESUMEN

Streptomyces spp. are "nature's antibiotic factories" that produce valuable bioactive metabolites, such as the cytotoxic anthracycline polyketides. While the anthracyclines have hundreds of natural and chemically synthesized analogues, much of the chemical diversity stems from enzymatic modifications to the saccharide chains and, to a lesser extent, from alterations to the core scaffold. Previous work has resulted in the generation of a BioBricks synthetic biology toolbox in Streptomyces coelicolor M1152ΔmatAB that could produce aklavinone, 9-epi-aklavinone, auramycinone, and nogalamycinone. In this work, we extended the platform to generate oxidatively modified analogues via two crucial strategies. (i) We swapped the ketoreductase and first-ring cyclase enzymes for the aromatase cyclase from the mithramycin biosynthetic pathway in our polyketide synthase (PKS) cassettes to generate 2-hydroxylated analogues. (ii) Next, we engineered several multioxygenase cassettes to catalyze 11-hydroxylation, 1-hydroxylation, 10-hydroxylation, 10-decarboxylation, and 4-hydroxyl regioisomerization. We also developed improved plasmid vectors and S. coelicolor M1152ΔmatAB expression hosts to produce anthracyclinones. This work sets the stage for the combinatorial biosynthesis of bespoke anthracyclines using recombinant Streptomyces spp. hosts.


Asunto(s)
Antraciclinas , Sintasas Poliquetidas , Streptomyces coelicolor , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/genética , Antraciclinas/metabolismo , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Streptomyces/metabolismo , Streptomyces/genética , Vías Biosintéticas/genética , Hidroxilación , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Antibacterianos/química
16.
Artículo en Inglés | WPRIM | ID: wpr-1010409

RESUMEN

otrA resembles elongation factor G (EF-G) and is considered to be an oxytetracycline (OTC)-resistance determinant in Streptomyces rimosus. In order to determine whether otrA also conferred resistance to OTC and other aminoglycosides to Streptomyces coelicolor, the otrA gene from S. rimosus M527 was cloned under the control of the strong ermE* promoter. The resulting plasmid, pIB139-otrA, was introduced into S. coelicolor M145 by intergeneric conjugation, yielding the recombinant strain S. coelicolor M145-OA. As expected S. coelicolor M145-OA exhibited higher resistance levels specifically to OTC and aminoglycosides gentamycin, hygromycin, streptomycin, and spectinomycin. However, unexpectedly, S. coelicolor M145-OA on solid medium showed an accelerated aerial mycelia formation, a precocious sporulation, and an enhanced actinorhodin (Act) production. Upon growth in 5-L fermentor, the amount of intra- and extracellular Act production was 6-fold and 2-fold higher, respectively, than that of the original strain. Consistently, reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the transcriptional level of pathway-specific regulatory gene actII-orf4 was significantly enhanced in S. coelicolor M145-OA compared with in S. coelicolor M145.


Asunto(s)
Aminoglicósidos/farmacología , Antraquinonas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Streptomyces coelicolor/metabolismo
17.
Electron. j. biotechnol ; 15(1): 8-8, Jan. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-640534

RESUMEN

Background: The growing problem of environmental pollution caused by synthetic plastics has led to the search for alternative materials such as biodegradable plastics. Of the biopolymers presently under development, starch/natural rubber is one promising alternative. Several species of bacteria and fungi are capable of degrading natural rubber and many can degrade starch. Results: Streptomyces coelicolor CH13 was isolated from soil according to its ability to produce translucent halos on a mineral salts medium, MSM, supplemented with natural rubber and to degrade starch. Scanning electron microscope studies showed that it colonized the surfaces of strips of a new starch/natural rubber biopolymer and rubber gloves and caused degradation by forming holes, and surface degradation. Starch was completely removed and polyisoprene chains were broken down to produce aldehyde and/or carbonyl groups. After 6 weeks of cultivation with strips of the polymers in MSM, S. coelicolor CH13 reduced the weight of the starch/NR biopolymer by 92 percent and that of the rubber gloves by 14.3 percent. Conclusions: This study indicated that this bacterium causes the biodegradation of the new biopolymer and natural rubber and confirms that this new biopolymer can be degraded in the environment and would be suitable as a ‘green plastic’ derived from natural sources.


Asunto(s)
Almidón/metabolismo , Biopolímeros/metabolismo , Goma/metabolismo , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/química , Biodegradación Ambiental , Biopolímeros/química , Goma/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA