Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(12): e1010523, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36469526

RESUMEN

Activin and inhibin are both dimeric proteins sharing the same ß subunits that belong to the TGF-ß superfamily. They are well known for stimulating and inhibiting pituitary FSH secretion, respectively, in mammals. In addition, activin also acts as a mesoderm-inducing factor in frogs. However, their functions in development and reproduction of other species are poorly defined. In this study, we disrupted all three activin/inhibin ß subunits (ßAa, inhbaa; ßAb, inhbab; and ßB, inhbb) in zebrafish using CRISPR/Cas9. The loss of ßAa/b but not ßB led to a high mortality rate in the post-hatching stage. Surprisingly, the expression of fshb but not lhb in the pituitary increased in the female ßA mutant together with aromatase (cyp19a1a) in the ovary. The single mutant of ßAa/b showed normal folliculogenesis in young females; however, their double mutant (inhbaa-/-;inhbab-/-) showed delayed follicle activation, granulosa cell hypertrophy, stromal cell accumulation and tissue fibrosis. The ovary of inhbaa-/- deteriorated progressively after 180 dpf with reduced fecundity and the folliculogenesis ceased completely around 540 dpf. In addition, tumor- or cyst-like tissues started to appear in the inhbaa-/- ovary after about one year. In contrast to females, activin ßAa/b mutant males showed normal spermatogenesis and fertility. As for activin ßB subunit, the inhbb-/- mutant exhibited normal folliculogenesis, spermatogenesis and fertility in both sexes; however, the fecundity of mutant females decreased dramatically at 270 dpf with accumulation of early follicles. In summary, the activin-inhibin system plays an indispensable role in fish reproduction, in particular folliculogenesis and ovarian homeostasis.


Asunto(s)
Subunidades beta de Inhibinas , Inhibinas , Animales , Femenino , Inhibinas/genética , Inhibinas/metabolismo , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Activinas/genética , Activinas/metabolismo , Reproducción/genética , Mamíferos/metabolismo
2.
J Pathol ; 256(1): 25-37, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543458

RESUMEN

Upstream stimuli for myofibroblast activation are of considerable interest for understanding the mechanisms underlying renal fibrosis. Activin B, a member of the TGF-ß family, exists as a homodimer of inhibin subunit beta B (INHBB), but its role in renal fibrosis remains unknown. We found that INHBB expression was significantly increased in various renal fibrosis models and human chronic kidney disease specimens with renal fibrosis. Notably, the increase of INHBB occurred mainly in the tubular epithelial cells (TECs). In vivo, inhibiting INHBB blocked the activation of interstitial fibroblasts and ameliorated the renal fibrosis induced by unilateral ureteral obstruction or ischemia-reperfusion injury, while ectopic expression of INHBB in the TECs was able to activate interstitial fibroblasts and initiate interstitial fibrosis. In vitro, overexpression of INHBB in TECs led to the secretion of activin B, thereby promoting the proliferation and activation of interstitial fibroblasts through activin B/Smad signaling. Furthermore, inhibition of activin B/Smad signaling attenuated the fibrotic response caused by tubular INHBB. Mechanistically, the upregulation of INHBB depended on the transcription factor Sox9 in the injured TECs. Clinical analyses also identified a positive correlation between Sox9 and INHBB expression in human specimens, suggesting the Sox9/INHBB axis as a positive regulator of renal fibrosis. In conclusion, tubule-derived INHBB is implicated in the pathogenesis of renal fibrosis by activating the surrounding fibroblasts in a paracrine manner, thereby exhibiting as a potential therapeutic target. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis/metabolismo , Subunidades beta de Inhibinas/metabolismo , Animales , Proliferación Celular/fisiología , Fibroblastos/patología , Fibrosis/patología , Humanos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Regulación hacia Arriba , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
3.
Proc Natl Acad Sci U S A ; 117(42): 26460-26469, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020308

RESUMEN

Relapse vulnerability in substance use disorder is attributed to persistent cue-induced drug seeking that intensifies (or "incubates") during drug abstinence. Incubated cocaine seeking has been observed in both humans with cocaine use disorder and in preclinical relapse models. This persistent relapse vulnerability is mediated by neuroadaptations in brain regions involved in reward and motivation. The dorsal hippocampus (DH) is involved in context-induced reinstatement of cocaine seeking but the role of the DH in cocaine seeking during prolonged abstinence has not been investigated. Here we found that transforming growth factor-ß (TGF-ß) superfamily member activin A is increased in the DH on abstinence day (AD) 30 but not AD1 following extended-access cocaine self-administration compared to saline controls. Moreover, activin A does not affect cocaine seeking on AD1 but regulates cocaine seeking on AD30 in a bidirectional manner. Next, we found that activin A regulates phosphorylation of NMDA receptor (NMDAR) subunit GluN2B and that GluN2B-containing NMDARs also regulate expression of cocaine seeking on AD30. Activin A and GluN2B-containing NMDARs have both previously been implicated in hippocampal synaptic plasticity. Therefore, we examined synaptic strength in the DH during prolonged abstinence and observed an increase in moderate long-term potentiation (LTP) in cocaine-treated rats compared to saline controls. Lastly, we examined the role of DH projections to the lateral septum (LS), a brain region implicated in cocaine seeking and found that DH projections to the LS govern cocaine seeking on AD30. Taken together, this study demonstrates a role for the DH in relapse behavior following prolonged abstinence from cocaine self-administration.


Asunto(s)
Comportamiento de Búsqueda de Drogas/fisiología , Hipocampo/metabolismo , Subunidades beta de Inhibinas/metabolismo , Activinas/metabolismo , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Extinción Psicológica/efectos de los fármacos , Masculino , Plasticidad Neuronal/efectos de los fármacos , Fosforilación , Ratas , Ratas Sprague-Dawley , Recurrencia , Autoadministración , Factor de Crecimiento Transformador beta/metabolismo
4.
J Cell Mol Med ; 26(5): 1540-1555, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150061

RESUMEN

Pancreatic cancer is one of the most lethal gastrointestinal tumours, the most common pathological type is pancreatic adenocarcinoma (PAAD). In recent year, immune imbalanced in tumour microenvironment has been shown to play an important role in the evolution of tumours progression, and the efficacy of immunotherapy has been gradually demonstrated in clinical practice. In this study, we propose to construct an immune-related prognostic risk model based on immune-related genes MMP14 and INHBA expression that can assess the prognosis of pancreatic cancer patients and identify potential therapeutic targets for pancreatic cancer, to provide new ideas for the treatment of pancreatic cancer. We also investigate the correlation between macrophage infiltration and MMP14 and INHBA expression. First, the gene expression data of pancreatic cancer and normal pancreatic tissue were obtained from The Cancer Genome Atlas Program (TCGA) and The Genotype-Tissue Expression public database (GTEx). The differentially expressed immune-related genes between pancreatic cancer samples and normal sample were screened by R software. Secondly, univariate Cox regression analysis were used to evaluate the relationship between immune-related genes and the prognosis of pancreatic cancer patients. A polygenic risk score model was constructed by Cox regression analysis. The prognostic nomogram was constructed, and its performance was evaluated comprehensively by internal calibration curve and C-index. Using the risk model, each patient gets a risk score, and was divided into high- or low- risk groups. The proportion of 22 types of immune cells infiltration in pancreatic cancer samples was inferred by CIBERSOFT algorithm, correlation analysis (Pearson method) was used to analyse the correlation between the immune-related genes and immunes cells. Then, we applied macrophage conditioned medium to culture pancreatic cancer cell line PANC1, detected the expression of MMP14 and INHBA by qRT-PCR and Western blot methods. Knock-down MMP14 and INHBA in PANC1 cells by transfected with shRNA lentiviruses. Detection of migration ability of pancreatic cells was done by trans-well cell migration assay. A subcutaneous xenograft tumour model of human pancreatic cancer in nude mice was constructed. In conclusion, an immune-related gene prognostic model was constructed, patients with high-risk scores have poorer survival status, M2-phenotype tumour-associated macrophages (TAMs) up-regulate two immune-related genes, MMP14 and INHBA, which were used to establish the prognostic model. Knock-down of MMP14 and INHBA inhibited invasion of pancreatic cancer.


Asunto(s)
Adenocarcinoma , Subunidades beta de Inhibinas/metabolismo , Neoplasias Pancreáticas , Adenocarcinoma/genética , Animales , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/patología , Fenotipo , Pronóstico , Microambiente Tumoral/genética , Macrófagos Asociados a Tumores , Neoplasias Pancreáticas
5.
J Biol Chem ; 297(4): 101162, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481843

RESUMEN

Cyclin-dependent kinase 7 (CDK7) is a master regulatory kinase that drives cell cycle progression and stimulates expression of oncogenes in a myriad of cancers. Inhibitors of CDK7 (CDK7i) are currently in clinical trials; however, as with many cancer therapies, patients will most likely experience recurrent disease due to acquired resistance. Identifying targets underlying CDK7i resistance will facilitate prospective development of new therapies that can circumvent such resistance. Here we utilized triple-negative breast cancer as a model to discern mechanisms of resistance as it has been previously shown to be highly responsive to CDK7 inhibitors. After generating cell lines with acquired resistance, high-throughput RNA sequencing revealed significant upregulation of genes associated with efflux pumps and transforming growth factor-beta (TGF-ß) signaling pathways. Genetic silencing or pharmacological inhibition of ABCG2, an efflux pump associated with multidrug resistance, resensitized resistant cells to CDK7i, indicating a reliance on these transporters. Expression of activin A (INHBA), a member of the TGF-ß family of ligands, was also induced, whereas its intrinsic inhibitor, follistatin (FST), was repressed. In resistant cells, increased phosphorylation of SMAD3, a downstream mediator, confirmed an increase in activin signaling, and phosphorylated SMAD3 directly bound the ABCG2 promoter regulatory region. Finally, pharmacological inhibition of TGF-ß/activin receptors or genetic silencing of SMAD4, a transcriptional partner of SMAD3, reversed the upregulation of ABCG2 in resistant cells and phenocopied ABCG2 inhibition. This study reveals that inhibiting the TGF-ß/Activin-ABCG2 pathway is a potential avenue for preventing or overcoming resistance to CDK7 inhibitors.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/biosíntesis , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Subunidades beta de Inhibinas/metabolismo , Proteínas de Neoplasias/biosíntesis , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Subunidades beta de Inhibinas/genética , Proteínas de Neoplasias/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Quinasa Activadora de Quinasas Ciclina-Dependientes
6.
EMBO J ; 36(11): 1623-1639, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28468752

RESUMEN

SMAD4 is a common intracellular effector for TGF-ß family cytokines, but the mechanism by which its activity is dynamically regulated is unclear. We demonstrated that ubiquitin-specific protease (USP) 4 strongly induces activin/BMP signaling by removing the inhibitory monoubiquitination from SMAD4. This modification was triggered by the recruitment of the E3 ligase, SMURF2, to SMAD4 following ligand-induced regulatory (R)-SMAD-SMAD4 complex formation. Whereas the interaction of the negative regulator c-SKI inhibits SMAD4 monoubiquitination, the ligand stimulates the recruitment of SMURF2 to the c-SKI-SMAD2 complex and triggers c-SKI ubiquitination and degradation. Thus, SMURF2 has a role in termination and initiation of TGF-ß family signaling. An increase in monoubiquitinated SMAD4 in USP4-depleted mouse embryonic stem cells (mESCs) decreased both the BMP- and activin-induced changes in the embryonic stem cell fate. USP4 sustained SMAD4 activity during activin- and BMP-mediated morphogenic events in early zebrafish embryos. Moreover, zebrafish depleted of USP4 exhibited defective cell migration and slower coordinated cell movement known as epiboly, both of which could be rescued by SMAD4. Therefore, USP4 is a critical determinant of SMAD4 activity.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Subunidades beta de Inhibinas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteína Smad4/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Animales , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Humanos , Ratones , Células Madre Embrionarias de Ratones/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas , Pez Cebra/embriología
7.
Int J Obes (Lond) ; 45(2): 316-325, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32873911

RESUMEN

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery is a therapeutic intervention for morbid obesity and type 2 diabetes (T2D) that improves metabolic regulation. Follistatin (Fst) could be implicated in improved glycemia as it is highly regulated by RYGB. However, it is unknown if metabolic status, such as T2D, alters the Fst response to RYGB. In addition, the effect of RYGB on the Fst target, activin A, is unknown in individuals with obesity and T2D, but is needed to interpret the functional effects of altering Fst. Finally, whether Fst-regulated intracellular signaling contributes to beneficial effects of RYGB is undetermined. METHODS: Circulating Fst and activin A were measured before, 1 week, and 1 year after RYGB surgery in a total of 20 individuals with obesity, 10 with normoglycemia (NGT) and 10 with preoperative T2D. Intracellular signaling downstream of the Activin receptor type IIB (ActRIIB) signaling pathway was analyzed in skeletal muscle and adipose tissue. RESULTS: The doubling in circulating Fst observed in subjects with NGT 1-week and 1-year post surgery was absent in T2D. After 1 week, RYGB reduced activin A by 27% (p < 0.001) and 20% (p < 0.01) in subjects with NGT and T2D, respectively; a reduction that tended to be maintained in the subjects with T2D at 1-year post-RYGB (-15%; p = 0.0592). RYGB had no effects on skeletal muscle ActRIIB signaling. In contrast, adipose tissue phosphorylation of SMAD2Ser465/467, p70S6KThr389, S6RPSer235/236, and 4E-BP1Thr37/49 was highly regulated, particularly 1-year post-RYGB (p < 0.05). CONCLUSIONS: In subjects with preoperative T2D, RYGB did not increase circulating Fst contrasting subjects with NGT, while the reduction in activin A was maintained. ActRIIB signaling was upregulated in adipose tissue, but not skeletal muscle, following RYGB in both individuals with NGT and T2D. Our results suggest a role of adipose tissue ActRIIB signaling for the beneficial effects of RYGB surgery.


Asunto(s)
Receptores de Activinas Tipo II/análisis , Activinas/sangre , Activinas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Folistatina/sangre , Folistatina/metabolismo , Obesidad Mórbida , Tejido Adiposo/metabolismo , Adulto , Biopsia , Glucemia , Femenino , Estudios de Seguimiento , Derivación Gástrica , Glucosa/metabolismo , Control Glucémico , Humanos , Subunidades beta de Inhibinas/metabolismo , Masculino , Persona de Mediana Edad , Músculos/metabolismo , Obesidad Mórbida/complicaciones , Obesidad Mórbida/metabolismo , Obesidad Mórbida/fisiopatología , Obesidad Mórbida/cirugía , Transducción de Señal , Factores de Tiempo
8.
Exp Dermatol ; 30(3): 402-408, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33119185

RESUMEN

Keloids are benign tumours caused by abnormal wound healing driven by increased expression of cytokines, including activin A. This study compared effects of activins on normal and keloid-derived human dermal fibroblasts and investigated a novel treatment for keloids using follistatin. Normal skin and keloid tissue samples from 11 patients were used to develop primary fibroblast cultures, which were compared in terms of their histology and relevant gene (qRT-PCR and RNAseq) and protein (ELISA) expression. Activin A (INHBA) and connective tissue growth factor (CTGF) gene expression were significantly upregulated in keloid fibroblasts, as was activin A protein expression in cell lysates and culture medium. Activator protein 1 inhibitor (SR11302) significantly decreased INHBA and CTGF expression in keloid fibroblasts and a single treatment of follistatin over 5 days significantly inhibited activin and various matrix-related genes in keloid fibroblasts when compared to controls. Follistatin, by binding activin A, suppressed CTGF expression suggesting a novel therapeutic role in managing keloids and perhaps other fibrotic diseases.


Asunto(s)
Folistatina/farmacología , Expresión Génica/efectos de los fármacos , Subunidades beta de Inhibinas/antagonistas & inhibidores , Queloide/genética , Queloide/metabolismo , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Elastina/genética , Elastina/metabolismo , Fibroblastos , Humanos , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , Subunidades beta de Inhibinas/farmacología , Interleucina-6/genética , Queloide/tratamiento farmacológico , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Retinoides/farmacología , Regulación hacia Arriba
9.
Cell Biochem Funct ; 39(2): 258-266, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32662905

RESUMEN

Inhibin, beta A (INHBA) is a member of the transforming growth factor (TGF-ß) family. The carcinogenic mechanisms of INHBA during the development of colorectal cancer (CRC) remain unclear. In the present study, we further elucidated the role of INHBA in CRC. We analysed the expression of INHBA in CRC and its relationship with patient prognosis using data from public databases. INHBA expression was evaluated in CRC tissues and cell lines using immunohistochemistry and western blotting. After inhibiting the expression of INHBA, the effect of INHBA on the function of CRC cells was evaluated in vitro. We found that INHBA was upregulated in CRC. High INHBA expression is closely related to poor prognosis in patients with CRC. Knockdown of INHBA in vitro can inhibit the proliferation, migration, and invasion of CRC cells. In terms of mechanism, we found that high INHBA expression activates the TGF-ß pathway. SIGNIFICANCE OF THE STUDY: INHBA acts as an oncogene in the progression of CRC and may, therefore, be a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales/patología , Subunidades beta de Inhibinas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidades beta de Inhibinas/antagonistas & inhibidores , Subunidades beta de Inhibinas/genética , Masculino , Persona de Mediana Edad , Pronóstico , Supervivencia sin Progresión , Modelos de Riesgos Proporcionales , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Tasa de Supervivencia
10.
Gen Comp Endocrinol ; 312: 113856, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34302847

RESUMEN

Inhibin and Activin, belong to the transforming growth factor ß superfamily (TGF-ß), which associate with the regulation of the reproductive process by the modulation of the hypothalamic-pituitary-gonad (HPG) axis. In this study, we reported the molecular cloning and tissue expression of inhibin α in allotriploid crucian carp and its parent- diploid red crucian carp. The full-length cDNA of inhibin α were respectively 1632 bp and 1642 bp in allotriploids and diploids, which both consisted of a 1044 bp open reading frame (ORF) encoding 347 amino acids. Real-time quantitative PCR (RT-qPCR) showed that allotriploids and diploids had significant expression of inhibin α in testis and ovary, and the expression of inhibin α in the gonads of allotriploids was higher than that of diploids. The immunohistochemistry indicated that the ovarian development of allotriploids was abnormal, and the expression of Inhibin α in the ovary of allotriploids was higher than that of diploids. Results of co-immunoprecitation (co-IP) demonstrated that the Inhibin α and Activin ßA, Inhibin α and Activin ßB can form dimers. These findings suggested that the elevated expression of inhibin α and the competitive binding of Inhibin α subunit with Activin ß subunits in allotriploids may be releted to the sterility of allotriploids. Furthermore, these results will facilitate the investigation of reproduction characteristics in allotriploids and provide theoretical basis for the study of polyploid breeding in the future.


Asunto(s)
Carpas , Infertilidad , Animales , Carpas/genética , Carpas/metabolismo , Femenino , Subunidades beta de Inhibinas/análisis , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , Inhibinas/química , Masculino
11.
Surg Today ; 51(10): 1703-1712, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33733290

RESUMEN

PURPOSE: Papillary thyroid cancer (PTC) is generally associated with a favorable prognosis. However, some patients have fatal disease, with locally infiltrating tumors or progressive distant metastases; yet few studies have investigated the characteristics of the tumor-progressive gene expression profile in advanced PTC. We conducted this study to clarify the gene expression status in advanced PTC and identify candidate molecules for prognostic biomarkers. METHODS: We analyzed 740 tumor-progressive gene expression levels from formalin-fixed paraffin-embedded blocks of samples from six patients with low-risk PTC and six patients with high-risk PTC, using the nCounter PanCancer Progression panel. Then, we investigated the association between the expression levels of focused genes and pathological factors in PTC patients in The Cancer Genome Atlas (TCGA) database. RESULTS: The expression levels of 14 genes in the high-risk PTC specimens were more than two-fold those in the low-risk PTC specimens. In the TCGA database, expression levels of four genes (CCL11, COL6A3, INHBA, and SRPX2) were significantly higher in patients with advanced PTC. Among the patients with advanced PTC, those with high SRPX2 expression levels had poor disease-free survival. Univariate and multivariate analyses revealed that high SRPX2 expression was an independent prognostic factor. CONCLUSION: Based on the findings of this study, CCL11, COL6A3, INHBA, and SRPX2 are potential biomarkers that indicate advanced PTC. SRPX2, in particular, is considered a prognostic biomarker.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Estudios de Asociación Genética/métodos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Transcriptoma/genética , Adulto , Anciano , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Expresión Génica , Humanos , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Riesgo , Cáncer Papilar Tiroideo/mortalidad , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/patología , Adulto Joven
12.
Cryo Letters ; 42(2): 67-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33970982

RESUMEN

BACKGROUND: Cryopreservation can induce cellular, genomic, and epigenetic abnormalities. OBJECTIVE: To analyse the impact of ovarian vitrification on follicular development and its epigenetic effect on promoter methylation of Inhba and Inhbb in granulosa cells. MATERIALS AND METHODS: Mouse ovaries were divided into control, toxicity, and vitrified groups. The growth and development of follicles were examined. After in vitro culture of follicles, DNA was extracted from isolated granulosa cells and treated with sodium bisulfite. The promoter methylation of Inhba and Inhbb was analyzed by direct PCR sequencing. RESULTS: Vitrification reduced the growth of follicles; however, antral cavity formation was not influenced negatively. Vitrification reduced the percentage of 5-methylcytosine in the Inhba promoter, while CpG sites in the promoter of Inhbb remained unmethylated. CONCLUSION: Vitrification had adverse effects on follicle growth and the epigenetics of granulosa cells. The results of the current study show that vitrification methods of ovary need more improvement.


Asunto(s)
Criopreservación , Células de la Granulosa/metabolismo , Subunidades beta de Inhibinas/metabolismo , Folículo Ovárico , Vitrificación , Animales , Metilación de ADN , Femenino , Ratones , Regiones Promotoras Genéticas
13.
Exp Cell Res ; 374(1): 114-121, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30458178

RESUMEN

Activin A, a multifunctional cytokine of transforming growth factor-ß (TGF-ß) superfamily, can be produced by the diverse immune cells. NK cells in peripheral blood are one of the major immune cells applied to cancer therapy in recent years. However, whether activin A can be produced by natural killer (NK) cells and be involved in regulation of peripheral blood NK cells activities of mouse are not well characterized. Here, we found that activin type IIA and IIB receptors and signaling molecules Smad2, 3 were expressed in peripheral blood NK cells of mouse by flow cytometry and RT-PCR. The cultured blood NK cells of mouse not only produced activin ßA chain protein by intracellular cytokine staining, but also secreted mature activin A protein by enzyme-linked immunosorbent assay (ELISA), and the production was promoted by IL-2. In addition, IL-2 as a positive control obviously promoted IFNγ production of mouse blood NK cells in vitro. However, activin A suppressed IFNγ production, but enhanced IL-2 synthesis and did not alter IL-10 production. Moreover, we found that activin A significantly suppressed the ability of NK cells to lyse target cells. These data revealed that blood NK cells of mouse were not only the target cells in response to activin A, but also the source of activin A, suggesting that activin A may play an important role in regulation of NK cells activities of mouse in an autocrine / paracrine manner.


Asunto(s)
Activinas/farmacología , Comunicación Autocrina , Células Asesinas Naturales/metabolismo , Comunicación Paracrina , Receptores de Activinas Tipo II/sangre , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Comunicación Autocrina/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Folistatina/farmacología , Subunidades beta de Inhibinas/sangre , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , Interferón gamma/biosíntesis , Interleucina-10/biosíntesis , Interleucina-2/biosíntesis , Células Asesinas Naturales/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Comunicación Paracrina/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Smad/sangre , Proteínas Smad/genética , Proteínas Smad/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(24): E4772-E4781, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28559342

RESUMEN

Embryo implantation remains a significant challenge for assisted reproductive technology, with implantation failure occurring in ∼50% of in vitro fertilization attempts. Understanding the molecular mechanisms underlying uterine receptivity will enable the development of new interventions and biomarkers. TGFß family signaling in the uterus is critical for establishing and maintaining pregnancy. Follistatin (FST) regulates TGFß family signaling by selectively binding TGFß family ligands and sequestering them. In humans, FST is up-regulated in the decidua during early pregnancy, and women with recurrent miscarriage have lower endometrial expression of FST during the luteal phase. Because global knockout of Fst is perinatal lethal in mice, we generated a conditional knockout (cKO) of Fst in the uterus using progesterone receptor-cre to study the roles of uterine Fst during pregnancy. Uterine Fst-cKO mice demonstrate severe fertility defects and deliver only 2% of the number of pups delivered by control females. In Fst-cKO mice, the uterine luminal epithelium does not respond properly to estrogen and progesterone signals and remains unreceptive to embryo attachment by continuing to proliferate and failing to differentiate. The uterine stroma of Fst-cKO mice also responds poorly to artificial decidualization, with lower levels of proliferation and differentiation. In the absence of uterine FST, activin B expression and signaling are up-regulated, and bone morphogenetic protein (BMP) signals are impaired. Our findings support a model in which repression of activin signaling by FST enables uterine receptivity by preserving critical BMP signaling.


Asunto(s)
Decidua/fisiología , Folistatina/fisiología , Útero/fisiología , Animales , Modelos Animales de Enfermedad , Implantación del Embrión/fisiología , Femenino , Fertilización In Vitro , Folistatina/deficiencia , Folistatina/genética , Humanos , Infertilidad Femenina/fisiopatología , Subunidades beta de Inhibinas/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Transducción de Señal
15.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260307

RESUMEN

In preeclampsia, widespread maternal endothelial dysfunction is often secondary to excessive generation of placental-derived anti-angiogenic factors, including soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng), along with proinflammatory cytokines such as tumour necrosis factor-α (TNF-α) and activin A, understanding of which offers potential opportunities for the development of novel therapies. The antimalarial hydroxychloroquine is an anti-inflammatory drug improving endothelial homeostasis in lupus. It has not been explored as to whether it can improve placental and endothelial function in preeclampsia. In this in vitro study, term placental explants were used to assess the effects of hydroxychloroquine on placental production of sFlt-1, sEng, TNF-α, activin A, and 8-isoprostane after exposure to hypoxic injury or oxidative stress. Similarly, human umbilical vein endothelial cells (HUVECs) were used to assess the effects of hydroxychloroquine on in vitro markers of endothelial dysfunction. Hydroxychloroquine had no effect on the release of sFlt-1, sEng, TNF-α, activin A, or 8-isoprostane from placental explants exposed to hypoxic injury or oxidative stress. However, hydroxychloroquine mitigated TNF-α-induced HUVEC production of 8-isoprostane and Nicotinanamide adenine dinucleotide phosphate (NADPH) oxidase expression. Hydroxychloroquine also mitigated TNF-α and preeclamptic serum-induced HUVEC monolayer permeability and rescued the loss of zona occludens protein zona occludens 1 (ZO-1). Although hydroxychloroquine had no apparent effects on trophoblast function, it may be a useful endothelial protectant in women presenting with preeclampsia.


Asunto(s)
Dinoprost/análogos & derivados , Células Endoteliales de la Vena Umbilical Humana/citología , Hidroxicloroquina/farmacología , Placenta/efectos de los fármacos , Preeclampsia/metabolismo , Hipoxia de la Célula , Supervivencia Celular/efectos de los fármacos , Dinoprost/metabolismo , Endoglina/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Subunidades beta de Inhibinas/metabolismo , Modelos Biológicos , Placenta/metabolismo , Preeclampsia/tratamiento farmacológico , Embarazo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
16.
J Cell Physiol ; 234(10): 18065-18074, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30963572

RESUMEN

Gastric cancer (GC) is the fourth largest cancer in the world, with a 5-year survival rate of <30%. Thus, this study intends to investigate the effects of inhibin ßA (INHBA) gene silencing on the migration and invasion of GC cells via the transforming growth factor-ß (TGF-ß) signaling pathway. Initially, this study determined the expression of INHBA and the TGF-ß signaling pathway-related genes in GC tissues. After that, to assess the effect of INHBA silencing on GC progression, GC cells were transfected with short hairpin RNAs that targeted INHBA in order to detect the expression of INHBA and the TGF-ß signaling pathway-related genes, as well as cell migration, invasion, and proliferation abilities. Finally, a tumor xenograft model in nude mice was constructed to verify the effect that the silencing of INHBA had on tumor growth. Highly expressed INHBA and activated TGF-ß signaling pathways were observed in GC tissues. In response to shINHBA-1 and shINHBA-2, the TGF-ß signaling pathway was inhibited in GC cells, whereas the GC cell migration, invasion, proliferation, and tumor growth were significantly dampened. On the basis of the observations and findings of this study, INHBA gene silencing inhibited the progression of GC by inactivating the TGF-ß signaling pathway, which provides a potential target in the treatment of GC.


Asunto(s)
Movimiento Celular , Subunidades beta de Inhibinas/genética , Interferencia de ARN , Tratamiento con ARN de Interferencia , Neoplasias Gástricas/terapia , Factor de Crecimiento Transformador beta/metabolismo , Adolescente , Adulto , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidades beta de Inhibinas/metabolismo , Masculino , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Factor de Crecimiento Transformador beta/genética , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
17.
Eur Respir J ; 54(2)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31221805

RESUMEN

A comprehensive understanding of the changes in gene expression in cell types involved in idiopathic pulmonary fibrosis (IPF) will shed light on the mechanisms underlying the loss of alveolar epithelial cells and development of honeycomb cysts and fibroblastic foci. We sought to understand changes in IPF lung cell transcriptomes and gain insight into innate immune aspects of pathogenesis.We investigated IPF pathogenesis using single-cell RNA-sequencing of fresh lung explants, comparing human IPF fibrotic lower lobes reflecting late disease, upper lobes reflecting early disease and normal lungs.IPF lower lobes showed increased fibroblasts, and basal, ciliated, goblet and club cells, but decreased alveolar epithelial cells, and marked alterations in inflammatory cells. We found three discrete macrophage subpopulations in normal and fibrotic lungs, one expressing monocyte markers, one highly expressing FABP4 and INHBA (FABP4hi), and one highly expressing SPP1 and MERTK (SPP1hi). SPP1hi macrophages in fibrotic lower lobes showed highly upregulated SPP1 and MERTK expression. Low-level local proliferation of SPP1hi macrophages in normal lungs was strikingly increased in IPF lungs.Co-localisation and causal modelling supported the role for these highly proliferative SPP1hi macrophages in activation of IPF myofibroblasts in lung fibrosis. These data suggest that SPP1hi macrophages contribute importantly to lung fibrosis in IPF, and that therapeutic strategies targeting MERTK and macrophage proliferation may show promise for treatment of this disease.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , Osteopontina/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Proliferación Celular , Células Epiteliales/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/genética , Sistema Inmunológico , Inmunidad Innata , Subunidades beta de Inhibinas/metabolismo , Pulmón/metabolismo , Miofibroblastos/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Procesos Estocásticos
18.
Neurochem Res ; 44(8): 1807-1817, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31093905

RESUMEN

Cerebral ischemic injury is a leading cause of human mortality and disability, seriously threatening human health in the world. Activin A (Act A), as a well-known neuroprotective factor, could alleviate ischemic brain injury mainly through Act A/Smads signaling. In our previous study, a noncanonical Act A/Smads signal loop with self-amplifying property was found, which strengthened the neuroprotective effect of Act A. However, this neuroprotective effect was limited due to the self-limiting behavior mediated by Smad anchor for receptor activation (SARA) protein. It was reported that microRNA-17-5p (miR-17-5p) could suppress the expression of SARA in esophageal squamous cell carcinoma. Thus we proposed that knockdown of miR-17-5p could strengthen the neuroprotective effect of Act A/Smads signal loop through SARA. To testify this hypothesis, oxygen-glucose deficiency (OGD) was introduced to highly differentiated rattus pheochromocytoma (PC12) cells. After the transfection of miR-17-5p mimic or inhibitor, the activity of Act A signal loop was quantified by the expression of phosphorylated Smad3. The results showed that suppression of miR-17-5p up-regulated the expression of SARA protein, which prolonged and strengthened the activity of Act A signaling through increased phosphorylation of downstream Smad3 and accumulation of Act A ligand. Further luciferase assay confirmed that SARA was a direct target gene of miR-17-5p. These practical discoveries will bring new insight on the endogenous neuroprotective effects of Act A signal loop by interfering a novel target: miR-17-5p.


Asunto(s)
Subunidades beta de Inhibinas/metabolismo , MicroARNs/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Hipoxia de la Célula , Técnicas de Silenciamiento del Gen , Glucosa/deficiencia , Isquemia/genética , Isquemia/metabolismo , Neuroprotección , Células PC12 , Ratas , Transducción de Señal , Proteína smad3/metabolismo , Regulación hacia Arriba
19.
Mol Biol Rep ; 46(2): 1603-1609, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30680594

RESUMEN

Activin E, a member of the TGF-ß super family, is a protein dimer of mature inhibin ßE subunits. Recently, it is reported that hepatic activin E may act as a hepatokine that alter whole body energy/glucose metabolism in human. However, orthologues of the activin E gene have yet to be identified in lower vertebrates, including fish. Here, we cloned the medaka (Oryzias latipes) activin E cDNA from liver. Among all the mammalian inhibin ß subunits, the mature medaka activin E amino acid sequence shares the highest homology with mammalian activin E. Recombinant expression studies suggest that medaka activin E, the disulfide-bound mature form of mature inhibin ßE subunits, may exert its effects in a way similar to that in mammals. Although activin E mRNA is predominantly expressed in liver in mammals, it is ubiquitously expressed in medaka tissues. Since expression in the liver was enhanced after a high fat diet, medaka activin E may be associated with energy/glucose metabolism, as shown in mice and human.


Asunto(s)
Subunidades beta de Inhibinas/metabolismo , Subunidades beta de Inhibinas/fisiología , Oryzias/genética , Activinas/metabolismo , Activinas/fisiología , Secuencia de Aminoácidos , Animales , ADN Complementario/metabolismo , Inhibinas/genética , Inhibinas/metabolismo , Hígado/metabolismo , Oryzias/metabolismo , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
20.
Breast Cancer Res ; 20(1): 127, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30348200

RESUMEN

BACKGROUND: Bone is one of the most frequent metastatic sites of advanced breast cancer. Current therapeutic agents aim to inhibit osteoclast-mediated bone resorption but only have palliative effects. During normal bone remodeling, the balance between bone resorption and osteoblast-mediated bone formation is essential for bone homeostasis. One major function of osteoblast during bone formation is to secrete type I procollagen, which will then be processed before being crosslinked and deposited into the bone matrix. METHODS: Small RNA sequencing and quantitative real-time PCR were used to detect miRNA levels in patient blood samples and in the cell lysates as well as extracellular vesicles of parental and bone-tropic MDA-MB-231 breast cancer cells. The effects of cancer cell-derived extracellular vesicles isolated by ultracentrifugation and carrying varying levels of miR-218 were examined in osteoblasts by quantitative real-time PCR, Western blot analysis, and P1NP bone formation marker analysis. Cancer cells overexpressing miR-218 were examined by transcriptome profiling through RNA sequencing to identify intrinsic genes and pathways influenced by miR-218. RESULTS: We show that circulating miR-218 is associated with breast cancer bone metastasis. Cancer-secreted miR-218 directly downregulates type I collagen in osteoblasts, whereas intracellular miR-218 in breast cancer cells regulates the expression of inhibin ß subunits. Increased cancer secretion of inhibin ßA results in elevated Timp3 expression in osteoblasts and the subsequent repression of procollagen processing during osteoblast differentiation. CONCLUSIONS: Here we identify a twofold function of cancer-derived miR-218, whose levels in the blood are associated with breast cancer metastasis to the bone, in the regulation of type I collagen deposition by osteoblasts. The adaptation of the bone niche mediated by miR-218 might further tilt the balance towards osteolysis, thereby facilitating other mechanisms to promote bone metastasis.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias de la Mama/patología , MicroARN Circulante/metabolismo , Colágeno Tipo I/metabolismo , MicroARNs/metabolismo , Osteoblastos/metabolismo , Adulto , Animales , Células de la Médula Ósea , Neoplasias Óseas/sangre , Neoplasias Óseas/secundario , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Cadena alfa 1 del Colágeno Tipo I , Regulación hacia Abajo , Femenino , Humanos , Subunidades beta de Inhibinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Osteoclastos/fisiología , Osteogénesis/genética , Cultivo Primario de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA