Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.021
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(9): 2175-2193.e21, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38552623

RESUMEN

In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Retículo Endoplásmico , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Calcio/metabolismo , Aparato de Golgi/metabolismo , Ratas , Transporte Biológico , Terminales Presinápticos/metabolismo , Sinapsinas/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas del Citoesqueleto/metabolismo , Separación de Fases
2.
Cell ; 187(18): 5102-5117.e16, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39043179

RESUMEN

Neurons produce and release neuropeptides to communicate with one another. Despite their importance in brain function, circuit-based mechanisms of peptidergic transmission are poorly understood, primarily due to the lack of tools for monitoring and manipulating neuropeptide release in vivo. Here, we report the development of two genetically encoded tools for investigating peptidergic transmission in behaving mice: a genetically encoded large dense core vesicle (LDCV) sensor that detects presynaptic neuropeptide release and a genetically encoded silencer that specifically degrades neuropeptides inside LDCVs. Using these tools, we show that neuropeptides, not glutamate, encode the unconditioned stimulus in the parabrachial-to-amygdalar threat pathway during Pavlovian threat learning. We also show that neuropeptides play important roles in encoding positive valence and suppressing conditioned threat response in the amygdala-to-parabrachial endogenous opioidergic circuit. These results show that our sensor and silencer for presynaptic peptidergic transmission are reliable tools to investigate neuropeptidergic systems in awake, behaving animals.


Asunto(s)
Miedo , Neuropéptidos , Animales , Neuropéptidos/metabolismo , Ratones , Miedo/fisiología , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Transmisión Sináptica , Masculino , Ratones Endogámicos C57BL , Puente/metabolismo , Puente/fisiología , Condicionamiento Clásico , Terminales Presinápticos/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo
3.
Cell ; 179(2): 498-513.e22, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585084

RESUMEN

Neuromodulators bind to pre- and postsynaptic G protein-coupled receptors (GPCRs), are able to quickly change intracellular cyclic AMP (cAMP) and Ca2+ levels, and are thought to play important roles in neuropsychiatric and neurodegenerative diseases. Here, we discovered in human neurons an unanticipated presynaptic mechanism that acutely changes synaptic ultrastructure and regulates synaptic communication. Activation of neuromodulator receptors bidirectionally controlled synaptic vesicle numbers within nerve terminals. This control correlated with changes in the levels of cAMP-dependent protein kinase A-mediated phosphorylation of synapsin-1. Using a conditional deletion approach, we reveal that the neuromodulator-induced control of synaptic vesicle numbers was largely dependent on synapsin-1. We propose a mechanism whereby non-phosphorylated synapsin-1 "latches" synaptic vesicles to presynaptic clusters at the active zone. cAMP-dependent phosphorylation of synapsin-1 then removes the vesicles. cAMP-independent dephosphorylation of synapsin-1 in turn recruits vesicles. Synapsin-1 thereby bidirectionally regulates synaptic vesicle numbers and modifies presynaptic neurotransmitter release as an effector of neuromodulator signaling in human neurons.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Terminales Presinápticos/metabolismo , Sinapsinas/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/metabolismo , Receptores de Neurotransmisores/metabolismo , Transducción de Señal
4.
Cell ; 179(6): 1393-1408.e16, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31735496

RESUMEN

Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with ∼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.


Asunto(s)
Red Nerviosa/fisiología , Conducta Sexual Animal/fisiología , Animales , Estrógenos/metabolismo , Ciclo Estral/efectos de los fármacos , Femenino , Hormonas Esteroides Gonadales/farmacología , Hipotálamo Anterior/fisiología , Masculino , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovario/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Receptores de Progesterona/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
5.
Cell ; 172(1-2): 8-10, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328922

RESUMEN

Arc, a master regulator of synaptic plasticity, contains sequence elements that are evolutionarily related to retrotransposon Gag genes. Two related papers in this issue of Cell show that Arc retains retroviral-like capsid-forming ability and can transmit mRNA between cells in the nervous system, a process that may be important for synaptic function.


Asunto(s)
Productos del Gen gag , Terminales Presinápticos , Animales , Proteínas del Citoesqueleto , Proteínas del Tejido Nervioso , Plasticidad Neuronal , ARN , Retroviridae
6.
Cell ; 173(6): 1343-1355.e24, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29856953

RESUMEN

Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 µm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus.


Asunto(s)
Axones/fisiología , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Tálamo/fisiología , Animales , Análisis por Conglomerados , Dendritas/fisiología , Lógica Difusa , Cuerpos Geniculados/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Movimiento (Física) , Neuronas/fisiología , Terminales Presinápticos/fisiología , Visión Ocular , Vías Visuales
7.
Cell ; 172(1-2): 262-274.e11, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328915

RESUMEN

Arc/Arg3.1 is required for synaptic plasticity and cognition, and mutations in this gene are linked to autism and schizophrenia. Arc bears a domain resembling retroviral/retrotransposon Gag-like proteins, which multimerize into a capsid that packages viral RNA. The significance of such a domain in a plasticity molecule is uncertain. Here, we report that the Drosophila Arc1 protein forms capsid-like structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles that are transferred from motorneurons to muscles. This loading and transfer depends on the darc1-mRNA 3' untranslated region, which contains retrotransposon-like sequences. Disrupting transfer blocks synaptic plasticity, suggesting that transfer of dArc1 complexed with its mRNA is required for this function. Notably, cultured cells also release extracellular vesicles containing the Gag region of the Copia retrotransposon complexed with its own mRNA. Taken together, our results point to a trans-synaptic mRNA transport mechanism involving retrovirus-like capsids and extracellular vesicles.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Productos del Gen gag/genética , Cuerpos Multivesiculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , ARN Mensajero/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Productos del Gen gag/química , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Plasticidad Neuronal , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Terminales Presinápticos/fisiología , Unión Proteica , Dominios Proteicos , Retroelementos/genética
8.
Nature ; 632(8023): 147-156, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39020173

RESUMEN

Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.


Asunto(s)
Adaptación Fisiológica , Axones , Ritmo Circadiano , Neurotransmisores , Fotoperiodo , Animales , Femenino , Ratones , Adaptación Fisiológica/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Axones/metabolismo , Axones/fisiología , Ritmo Circadiano/fisiología , Proteínas CLOCK/genética , Oscuridad , Núcleo Dorsal del Rafe/citología , Núcleo Dorsal del Rafe/metabolismo , Vías Nerviosas/fisiología , Neurotransmisores/metabolismo , Área Preóptica/citología , Área Preóptica/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Virus de la Rabia , Serotonina/metabolismo , Sueño/fisiología , Vigilia/fisiología
9.
Nature ; 627(8003): 358-366, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418885

RESUMEN

Astrocytes are heterogeneous glial cells of the central nervous system1-3. However, the physiological relevance of astrocyte diversity for neural circuits and behaviour remains unclear. Here we show that a specific population of astrocytes in the central striatum expresses µ-crystallin (encoded by Crym in mice and CRYM in humans) that is associated with several human diseases, including neuropsychiatric disorders4-7. In adult mice, reducing the levels of µ-crystallin in striatal astrocytes through CRISPR-Cas9-mediated knockout of Crym resulted in perseverative behaviours, increased fast synaptic excitation in medium spiny neurons and dysfunctional excitatory-inhibitory synaptic balance. Increased perseveration stemmed from the loss of astrocyte-gated control of neurotransmitter release from presynaptic terminals of orbitofrontal cortex-striatum projections. We found that perseveration could be remedied using presynaptic inhibitory chemogenetics8, and that this treatment also corrected the synaptic deficits. Together, our findings reveal converging molecular, synaptic, circuit and behavioural mechanisms by which a molecularly defined and allocated population of striatal astrocytes gates perseveration phenotypes that accompany neuropsychiatric disorders9-12. Our data show that Crym-positive striatal astrocytes have key biological functions within the central nervous system, and uncover astrocyte-neuron interaction mechanisms that could be targeted in treatments for perseveration.


Asunto(s)
Astrocitos , Cuerpo Estriado , Rumiación Cognitiva , Cristalinas mu , Animales , Humanos , Ratones , Astrocitos/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Edición Génica , Técnicas de Inactivación de Genes , Cristalinas mu/deficiencia , Cristalinas mu/genética , Cristalinas mu/metabolismo , Rumiación Cognitiva/fisiología , Transmisión Sináptica , Sistemas CRISPR-Cas , Neuronas Espinosas Medianas/metabolismo , Sinapsis/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Terminales Presinápticos/metabolismo , Inhibición Neural
10.
Cell ; 156(4): 825-35, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24529383

RESUMEN

Cognitive function is tightly related to metabolic state, but the locus of this control is not well understood. Synapses are thought to present large ATP demands; however, it is unclear how fuel availability and electrical activity impact synaptic ATP levels and how ATP availability controls synaptic function. We developed a quantitative genetically encoded optical reporter of presynaptic ATP, Syn-ATP, and find that electrical activity imposes large metabolic demands that are met via activity-driven control of both glycolysis and mitochondrial function. We discovered that the primary source of activity-driven metabolic demand is the synaptic vesicle cycle. In metabolically intact synapses, activity-driven ATP synthesis is well matched to the energetic needs of synaptic function, which, at steady state, results in ∼10(6) free ATPs per nerve terminal. Despite this large reservoir of ATP, we find that several key aspects of presynaptic function are severely impaired following even brief interruptions in activity-stimulated ATP synthesis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Sinapsis/metabolismo , Animales , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/metabolismo
11.
Nature ; 619(7970): 563-571, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407812

RESUMEN

Whereas progress has been made in the identification of neural signals related to rapid, cued decisions1-3, less is known about how brains guide and terminate more ethologically relevant decisions in which an animal's own behaviour governs the options experienced over minutes4-6. Drosophila search for many seconds to minutes for egg-laying sites with high relative value7,8 and have neurons, called oviDNs, whose activity fulfills necessity and sufficiency criteria for initiating the egg-deposition motor programme9. Here we show that oviDNs express a calcium signal that (1) dips when an egg is internally prepared (ovulated), (2) drifts up and down over seconds to minutes-in a manner influenced by the relative value of substrates-as a fly determines whether to lay an egg and (3) reaches a consistent peak level just before the abdomen bend for egg deposition. This signal is apparent in the cell bodies of oviDNs in the brain and it probably reflects a behaviourally relevant rise-to-threshold process in the ventral nerve cord, where the synaptic terminals of oviDNs are located and where their output can influence behaviour. We provide perturbational evidence that the egg-deposition motor programme is initiated once this process hits a threshold and that subthreshold variation in this process regulates the time spent considering options and, ultimately, the choice taken. Finally, we identify a small recurrent circuit that feeds into oviDNs and show that activity in each of its constituent cell types is required for laying an egg. These results argue that a rise-to-threshold process regulates a relative-value, self-paced decision and provide initial insight into the underlying circuit mechanism for building this process.


Asunto(s)
Toma de Decisiones , Drosophila melanogaster , Oviposición , Animales , Femenino , Señalización del Calcio , Toma de Decisiones/fisiología , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Vías Nerviosas , Neuronas/metabolismo , Oviposición/fisiología , Terminales Presinápticos/metabolismo , Desempeño Psicomotor
12.
Nature ; 620(7972): 154-162, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495689

RESUMEN

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Asunto(s)
Ayuno , Sistema Hipotálamo-Hipofisario , Neuronas , Sistema Hipófiso-Suprarrenal , Proteína Relacionada con Agouti/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Ayuno/fisiología , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Sistema Hipotálamo-Hipofisario/citología , Sistema Hipotálamo-Hipofisario/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/citología , Sistema Hipófiso-Suprarrenal/inervación , Sistema Hipófiso-Suprarrenal/metabolismo , Terminales Presinápticos/metabolismo , Núcleos Septales/citología , Núcleos Septales/metabolismo
13.
Mol Cell ; 81(1): 13-24.e7, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33202250

RESUMEN

Tethering of synaptic vesicles (SVs) to the active zone determines synaptic strength, although the molecular basis governing SV tethering is elusive. Here, we discover that small unilamellar vesicles (SUVs) and SVs from rat brains coat on the surface of condensed liquid droplets formed by active zone proteins RIM, RIM-BP, and ELKS via phase separation. Remarkably, SUV-coated RIM/RIM-BP condensates are encapsulated by synapsin/SUV condensates, forming two distinct SUV pools reminiscent of the reserve and tethered SV pools that exist in presynaptic boutons. The SUV-coated RIM/RIM-BP condensates can further cluster Ca2+ channels anchored on membranes. Thus, we reconstitute a presynaptic bouton-like structure mimicking the SV-tethered active zone with its one side attached to the presynaptic membrane and the other side connected to the synapsin-clustered SV condensates. The distinct interaction modes between membraneless protein condensates and membrane-based organelles revealed here have general implications in cellular processes, including vesicular formation and trafficking, organelle biogenesis, and autophagy.


Asunto(s)
Encéfalo/metabolismo , Canales de Calcio/metabolismo , Terminales Presinápticos/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Canales de Calcio/genética , Humanos , Ratones , Ratas , Sinapsinas/genética , Vesículas Sinápticas/genética
14.
Trends Biochem Sci ; 49(10): 888-900, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39198083

RESUMEN

The presynaptic nerve terminal is crucial for transmitting signals to the adjacent cell. To fulfill this role, specific proteins with distinct functions are concentrated in spatially confined areas within the nerve terminals. A recent concept termed liquid-liquid phase separation (LLPS) has provided new insights into how this process may occur. In this review, we aim to summarize the LLPS of proteins in different parts of the presynaptic nerve terminals, including synaptic vesicle (SV) clusters, the active zone (AZ), and the endocytic zone, with an additional focus on neurodegenerative diseases (NDDs), where the functional relevance of these properties is explored. Last, we propose new perspectives and future directions for the role of LLPS in presynaptic nerve terminals.


Asunto(s)
Terminales Presinápticos , Terminales Presinápticos/metabolismo , Humanos , Animales , Vesículas Sinápticas/metabolismo , Extracción Líquido-Líquido , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Separación de Fases
15.
EMBO J ; 43(20): 4472-4491, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39242788

RESUMEN

Monoamine neurotransmitters generated by de novo synthesis are rapidly transported and stored into synaptic vesicles at axon terminals. This transport is essential both for sustaining synaptic transmission and for limiting the toxic effects of monoamines. Here, synthesis of the monoamine histamine by histidine decarboxylase (HDC) and subsequent loading of histamine into synaptic vesicles are shown to be physically and functionally coupled within Drosophila photoreceptor terminals. This process requires HDC anchoring to synaptic vesicles via interactions with N-ethylmaleimide-sensitive fusion protein 1 (NSF1). Disassociating HDC from synaptic vesicles disrupts visual synaptic transmission and causes somatic accumulation of histamine, which leads to retinal degeneration. We further identified a proteasome degradation system mediated by the E3 ubiquitin ligase, purity of essence (POE), which clears mislocalized HDC from the soma, thus eliminating the cytotoxic effects of histamine. Taken together, our results reveal a dual mechanism for translocation and degradation of HDC that ensures restriction of histamine synthesis to axonal terminals and at the same time rapid loading into synaptic vesicles. This is crucial for sustaining neurotransmission and protecting against cytotoxic monoamines.


Asunto(s)
Proteínas de Drosophila , Histamina , Terminales Presinápticos , Vesículas Sinápticas , Animales , Histamina/metabolismo , Vesículas Sinápticas/metabolismo , Terminales Presinápticos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histidina Descarboxilasa/metabolismo , Histidina Descarboxilasa/genética , Transmisión Sináptica , Drosophila melanogaster/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Drosophila/metabolismo , Transporte Biológico
16.
Nature ; 601(7891): 105-109, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853473

RESUMEN

Local circuit architecture facilitates the emergence of feature selectivity in the cerebral cortex1. In the hippocampus, it remains unknown whether local computations supported by specific connectivity motifs2 regulate the spatial receptive fields of pyramidal cells3. Here we developed an in vivo electroporation method for monosynaptic retrograde tracing4 and optogenetics manipulation at single-cell resolution to interrogate the dynamic interaction of place cells with their microcircuitry during navigation. We found a local circuit mechanism in CA1 whereby the spatial tuning of an individual place cell can propagate to a functionally recurrent subnetwork5 to which it belongs. The emergence of place fields in individual neurons led to the development of inverse selectivity in a subset of their presynaptic interneurons, and recruited functionally coupled place cells at that location. Thus, the spatial selectivity of single CA1 neurons is amplified through local circuit plasticity to enable effective multi-neuronal representations that can flexibly scale environmental features locally without degrading the feedforward input structure.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Vías Nerviosas , Memoria Espacial/fisiología , Navegación Espacial/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Linaje de la Célula , Electroporación , Femenino , Interneuronas/fisiología , Masculino , Ratones , Inhibición Neural , Optogenética , Células de Lugar/fisiología , Terminales Presinápticos/metabolismo , Células Piramidales/fisiología , Análisis de la Célula Individual
17.
Development ; 151(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254120

RESUMEN

Hair cells of the inner ear and lateral-line system rely on specialized ribbon synapses to transmit sensory information to the central nervous system. The molecules required to assemble these synapses are not fully understood. We show that Nrxn3, a presynaptic adhesion molecule, is crucial for ribbon-synapse maturation in hair cells. In both mouse and zebrafish models, the loss of Nrxn3 results in significantly fewer intact ribbon synapses. We show in zebrafish that, initially, Nrxn3 loss does not alter pre- and postsynapse numbers but, later, synapses fail to pair, leading to postsynapse loss. We also demonstrate that Nrxn3 subtly influences synapse selectivity in zebrafish lateral-line hair cells that detect anterior flow. Loss of Nrxn3 leads to a 60% loss of synapses in zebrafish, which dramatically reduces pre- and postsynaptic responses. Despite fewer synapses, auditory responses in zebrafish and mice are unaffected. This work demonstrates that Nrxn3 is a crucial and conserved molecule required for the maturation of ribbon synapses. Understanding how ribbon synapses mature is essential to generating new therapies to treat synaptopathies linked to auditory or vestibular dysfunction.


Asunto(s)
Células Ciliadas Auditivas , Sinapsis , Proteínas de Pez Cebra , Pez Cebra , Animales , Sinapsis/metabolismo , Ratones , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células Ciliadas Auditivas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Terminales Presinápticos/metabolismo
18.
Cell ; 148(5): 1029-38, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385966

RESUMEN

Neurotransmission requires anterograde axonal transport of dense core vesicles (DCVs) containing neuropeptides and active zone components from the soma to nerve terminals. However, it is puzzling how one-way traffic could uniformly supply sequential release sites called en passant boutons. Here, Drosophila neuropeptide-containing DCVs are tracked in vivo for minutes with a new method called simultaneous photobleaching and imaging (SPAIM). Surprisingly, anterograde DCVs typically bypass proximal boutons to accumulate initially in the most distal bouton. Then, excess distal DCVs undergo dynactin-dependent retrograde transport back through proximal boutons into the axon. Just before re-entering the soma, DCVs again reverse for another round of anterograde axonal transport. While circulating over long distances, both anterograde and retrograde DCVs are captured sporadically in en passant boutons. Therefore, vesicle circulation, which includes long-range retrograde transport and inefficient bidirectional capture, overcomes the limitations of one-way anterograde transport to uniformly supply release sites with DCVs.


Asunto(s)
Neuropéptidos/metabolismo , Vesículas Secretoras/metabolismo , Sinapsis/metabolismo , Animales , Axones/metabolismo , Drosophila melanogaster , Microscopía Confocal/métodos , Neuronas/citología , Neuronas/metabolismo , Fotoblanqueo , Terminales Presinápticos/metabolismo , Transporte de Proteínas
19.
Nature ; 600(7890): 686-689, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819666

RESUMEN

Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning1-5. As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft6, the enlargement may have mechanical effects on presynaptic functions7. Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins8-12-as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging-in rat slice culture preparations13. Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca2+), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself14. Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism15 in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min.


Asunto(s)
Exocitosis , Ácido Glutámico , Animales , Ácido Glutámico/metabolismo , Terminales Presinápticos/metabolismo , Ratas , Proteínas SNARE/metabolismo , Sacarosa/metabolismo , Sacarosa/farmacología , Sinapsis/metabolismo
20.
Mol Cell ; 73(5): 859-860, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849390

RESUMEN

Wu et al. (2019) establish that the active zone proteins RIM and RIM-BP undergo liquid-liquid phase separation to tether Ca2+ channels. This important finding sets a new framework to study assembly and function of the presynaptic nerve terminal.


Asunto(s)
Sinapsis , Transmisión Sináptica , Terminales Presinápticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA