Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 116(1): 110771, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147941

RESUMEN

The complex evolutionary patterns in the mitochondrial genome (mitogenome) of the most species-rich shark order, the Carcharhiniformes (ground sharks) has led to challenges in the phylogenomic reconstruction of the families and genera belonging to the order, particularly the family Triakidae (houndsharks). The current state of Triakidae phylogeny remains controversial, with arguments for both monophyly and paraphyly within the family. We hypothesize that this variability is triggered by the selection of different a priori partitioning schemes to account for site and gene heterogeneity within the mitogenome. Here we used an extensive statistical framework to select the a priori partitioning scheme for inference of the mitochondrial phylogenomic relationships within Carcharhiniformes, tested site heterogeneous CAT + GTR + G4 models and incorporated the multi-species coalescent model (MSCM) into our analyses to account for the influence of gene tree discordance on species tree inference. We included five newly assembled houndshark mitogenomes to increase resolution of Triakidae. During the assembly procedure, we uncovered a 714 bp-duplication in the mitogenome of Galeorhinus galeus. Phylogenetic reconstruction confirmed monophyly within Triakidae and the existence of two distinct clades of the expanded Mustelus genus. The latter alludes to potential evolutionary reversal of reproductive mode from placental to aplacental, suggesting that reproductive mode has played a role in the trajectory of adaptive divergence. These new sequences have the potential to contribute to population genomic investigations, species phylogeography delineation, environmental DNA metabarcoding databases and, ultimately, improved conservation strategies for these ecologically and economically important species.


Asunto(s)
Genoma Mitocondrial , Tiburones , Femenino , Humanos , Embarazo , Animales , Filogenia , Placenta , Evolución Biológica , Tiburones/genética
2.
Fish Shellfish Immunol ; 150: 109661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821227

RESUMEN

IgNAR exhibits significant promise in the fields of cancer and anti-virus biotherapies. Notably, the variable regions of IgNAR (VNAR) possess comparable antigen binding affinity with much smaller molecular weight (∼12 kDa) compared to IgNAR. Antigen specific VNAR screening is a changeling work, which limits its application in medicine and therapy fields. Though phage display is a powerful tool for VNAR screening, it has a lot of drawbacks, such as small library coverage, low expression levels, unstable target protein, complicating and time-consuming procedures. Here we report VANR screening with next generation sequencing (NGS) could effectively overcome the limitations of phage display, and we successfully identified approximately 3000 BAFF-specific VNARs in Chiloscyllium plagiosum vaccinated with the BAFF antigen. The results of modelling and molecular dynamics simulation and ELISA assay demonstrated that one out of the top five abundant specific VNARs exhibited higher binding affinity to the BAFF antigen than those obtained through phage display screening. Our data indicates NGS would be an alternative way for VNAR screening with plenty of advantages.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Tiburones , Tiburones/inmunología , Tiburones/genética , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Antígenos/inmunología , Antígenos/genética , Enfermedades de los Peces/inmunología
3.
Mol Biol Rep ; 51(1): 826, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030452

RESUMEN

BACKGROUND: The oceanic whitetip shark Carcharhinus longimanus (family Carcharhinidae) is one of the largest sharks inhabiting all tropical and subtropical oceanic regions. Due to their life history traits and mortality attributed to pelagic longline fishing practices, this species is experiencing substantial population decline. Currently, C. longimanus is considered by the IUCN Red List of Threatened Species as "vulnerable" throughout its range and "critically endangered" in the western north Atlantic. This study sequences and describes the complete mitochondrial genome of C. longimanus in detail. METHODS AND RESULTS: The mitochondrial genome of C. longimanus was assembled through next-generation sequencing and then analyzed using specialized bioinformatics tools. The circular, double-stranded AT-rich mitogenome of C. longimanus is 16,704 bp long and contains 22 tRNA genes, 2 rRNA genes, 13 protein coding genes and a 1,065 bp long control region (CR). Out of the 22 tRNA genes, only one (tRNA-Ser1) lacked a typical 'cloverleaf' secondary structure. The prevalence of TTA (Leu), ATT (Ile) and CTA (Leu) codons in the PCGs likely contributes to the AT-rich nature of this mitogenome. In the CR, ten microsatellites were detected but no tandem repeats were found. Stem-and-loop secondary structures were common along the entire length of the CR. Ka/Ks values estimated for all PCGs were < 1, indicating that all the PCGs experience purifying selection. A phylomitogenomic analysis based on translated PCGs confirms the sister relationship between C. longimanus and C. obscurus. The analysis did not support the monophyly of the genus Carcharhinus. CONCLUSIONS: The assembled mitochondrial genome of this pelagic shark can provide insight into the phylogenetic relationships in the genus Carcharhinus and aid conservation and management efforts in the Central Pacific Ocean.


Asunto(s)
Genoma Mitocondrial , Filogenia , ARN de Transferencia , Tiburones , Animales , Genoma Mitocondrial/genética , Tiburones/genética , ARN de Transferencia/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico/genética , Especies en Peligro de Extinción , ADN Mitocondrial/genética , Análisis de Secuencia de ADN/métodos
4.
BMC Vet Res ; 20(1): 104, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491459

RESUMEN

BACKGROUND: members of the genus Sarcocystis are intracellular obligate protozoan parasites classified within the phylum Apicomplexa and have an obligate heteroxenous life cycle involving two hosts. A more comprehensive understanding of the prevalence and geographic range of different Sarcocystis species in marine ecosystems is needed globally and nationally. Hence, the objective of this study was to document the incidence of Sarcocystis infection in sharks within the aquarium ecosystem of Egypt and to identify the species through the characterization of the SSU rDNA gene. METHODS: All organs of the mako shark specimen underwent macroscopic screening to detect the existence of a Sarcocystis cyst. Ten cysts were collected from the intestine and processed separately to extract the genomic DNA. The polymerase chain reaction (PCR) was accomplished by amplifying a specific 18S ribosomal RNA (rRNA) gene fragment. Subsequently, the resulting amplicons were subjected to purification and sequencing processes. RESULTS: Macroscopic examination of the mako shark intestinal wall sample revealed the presence of Sarcocystis cysts of various sizes and shapes, and sequencing of the amplicons from Sarcocystis DNA revealed a 100% nucleotide identity with the sequence of Sarcocystis tenella recorded from sheep in Iran; The mako shark sequence has been deposited in the GeneBank with the accession number OQ721979. This study presents the first scientific evidence demonstrating the presence of the Sarcocystis parasite in sharks, thereby documenting this specific marine species as a novel intermediate host in the Sarcocystis life cycle. CONCLUSIONS: This is the first identification of Sarcocystis infection in sharks, and we anticipate it will be an essential study for future screenings and establishing effective management measures for this disease in aquatic ecosystems.


Asunto(s)
Sarcocystis , Tiburones , Animales , Ovinos/genética , Sarcocystis/genética , Ecosistema , Tiburones/genética , Filogenia , Océano Índico , ADN Ribosómico , Estadios del Ciclo de Vida
5.
Braz J Biol ; 84: e274862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511772

RESUMEN

Sharks of the genus Sphyrna are under intense exploitation globally. In Brazil's northern coast, this genus represents a high proportion of fisheries landings and comprises four species. However, due to difficulty of specific identification when specimens are landed, most of the records are limited to the genus level. Here we analyzed the effectiveness of ITS2 (Internal Transcribed Spacer 2 of rDNA) fragment length protocol (Abercrombie et al., 2005) for identifying hammerhead shark species, comparing with the analysis of COI (Cytochrome oxidase subunit I) and ITS2 sequences. We evaluated samples of muscle tissue acquired in the main fishing ports of Maranhão: Carutapera, Raposa e Tutóia. Sampling was conducted between March 2017 to March 2018 and complemented with material deposited in collection (2015). COI results indicated the occurrence of endangered species which are prohibited to be landed. These include Sphyrna mokarran (67%), S. lewini (15%), S. tudes (3%), and S. tiburo (15%). For the ITS2 marker, we investigated the optimization of the protocol developed by Abercrombie (2005) for to improve the use in this geographical area througout design of a new primers.


Asunto(s)
Tiburones , Animales , Tiburones/genética , Brasil , Especies en Peligro de Extinción , Explotaciones Pesqueras , Alimentos Marinos
6.
Sci Data ; 11(1): 285, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461175

RESUMEN

Sharks have thrived in the oceans for 400 million years, experienced five extinctions and evolved into today's apex predators. However, enormous genome size, poor karyotyping and limited tissue sampling options are the bottlenecks in shark research. Sharks of the family Orectolobiformes act as model species in transcriptome research with exceptionally high reproductive fecundity, catch prominence and oviparity. The present study illustrates a de novo transcriptome for an adult grey bamboo shark, Chiloscyllium griseum (Chondrichthyes; Hemiscyllidae) using paired-end RNA sequencing. Around 150 million short Illumina reads were obtained from five different tissues and assembled using the Trinity assembler. 70,647 hits on Uniprot by BLASTX was obtained after the transcriptome annotation. The data generated serve as a basis for transcriptome-based population genetic studies and open up new avenues in the field of comparative transcriptomics and conservation biology.


Asunto(s)
Tiburones , Transcriptoma , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Tiburones/genética
7.
PLoS One ; 19(4): e0300383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574082

RESUMEN

Threatened shark species are caught in large numbers by artisanal and commercial fisheries and traded globally. Monitoring both which shark species are caught and sold in fisheries, and the export of CITES-restricted products, are essential in reducing illegal fishing. Current methods for species identification rely on visual examination by experts or DNA barcoding techniques requiring specialist laboratory facilities and trained personnel. The need for specialist equipment and/or input from experts means many markets are currently not monitored. We have developed a paper-based Lab-on-a-Chip (LOC) to facilitate identification of three threatened and CITES-listed sharks, bigeye thresher (Alopias superciliosus), pelagic thresher (A. pelagicus) and shortfin mako shark (Isurus oxyrinchus) at market source. DNA was successfully extracted from shark meat and fin samples and combined with DNA amplification and visualisation using Loop Mediated Isothermal Amplification (LAMP) on the LOC. This resulted in the successful identification of the target species of sharks in under an hour, with a working positive and negative control. The LOC provided a simple "yes" or "no" result via a colour change from pink to yellow when one of the target species was present. The LOC serves as proof-of-concept (PoC) for field-based species identification as it does not require specialist facilities. It can be used by non-scientifically trained personnel, especially in areas where there are suspected high frequencies of mislabelling or for the identification of dried shark fins in seizures.


Asunto(s)
Tiburones , Animales , Tiburones/genética , Especies en Peligro de Extinción , Alimentos Marinos , Carne , ADN/genética
8.
Gene ; 8942024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38572145

RESUMEN

The Lemon shark Negaprion brevirostris is an important species experiencing conservation issues that is in need of genomic resources. Herein, we conducted a genome survey sequencing in N. brevirostris and determined genome size, explored repetitive elements, assembled and annotated the 45S rRNA DNA operon, and assembled and described in detail the mitochondrial genome. Lastly, the phylogenetic position of N. brevirostris in the family Carcharhinidae was examined using translated protein coding genes. The estimated haploid genome size ranged between 2.29 and 2.58 Gbp using a k-mer analysis, which is slightly below the genome size estimated for other sharks belonging to the family Carcharhinidae. Using a k-mer analysis, approx. 64-71 % of the genome of N. brevirostris was composed of repetitive elements. A relatively large proportion of the 'repeatome' could not be annotated. Taking into account only annotated repetitive elements, Class I - Long Interspersed Nuclear Element (LINE) were the most abundant repetitive elements followed by Class I - Penelope and Satellite DNA. The nuclear ribosomal operon was fully assembled. The AT-rich complete mitochondrial genome was 16,703 bp long and encoded 13 protein coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Negaprion brevirostris is closely related to the genera Carcharhinus, Glyphis and Lamiopsis in the family Carcharinidae. This new genomic resources will aid with the development of conservation plans for this large coastal shark.


Asunto(s)
Genoma Mitocondrial , Tiburones , Animales , Tamaño del Genoma , Filogenia , ADN , Tiburones/genética
9.
Sci Rep ; 14(1): 8909, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632352

RESUMEN

Among vertebrates, sharks exhibit both large and heterogeneous genome sizes ranging from 2.86 to 17.05 pg. Aiming for a better understanding of the patterns and causalities of shark genome size evolution, we applied phylogenetic comparative methods to published genome-size estimates for 71 species representing the main phylogenetic lineages, life-histories and ecological traits. The sixfold range of genome size variation was strongly traceable throughout the phylogeny, with a major expansion preceding shark diversification during the late Paleozoic and an ancestral state (6.33 pg) close to the present-day average (6.72 pg). Subsequent deviations from this average occurred at higher rates in squalomorph than in galeomorph sharks and were unconnected to evolutionary changes in the karyotype architecture, which were dominated by descending disploidy events. Genome size was positively correlated with cell and nucleus sizes and negatively with metabolic rate. The metabolic constraints on increasing genome size also manifested at higher phenotypic scales, with large genomes associated with slow lifestyles and purely marine waters. Moreover, large genome sizes were also linked to non-placental reproductive modes, which may entail metabolically less demanding embryological developments. Contrary to ray-finned fishes, large genome size was associated neither with the taxonomic diversity of affected clades nor with low genetic diversity.


Asunto(s)
Tiburones , Animales , Filogenia , Tamaño del Genoma , Tiburones/genética , Vertebrados/genética , Peces/genética , Evolución Molecular
10.
PeerJ ; 12: e16647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188178

RESUMEN

Shark fins are a delicacy consumed throughout Southeast Asia. The life history characteristics of sharks and the challenges associated with regulating fisheries and the fin trade make sharks particularly susceptible to overfishing. Here, we used DNA barcoding techniques to investigate the composition of the shark fin trade in Singapore, a globally significant trade hub. We collected 505 shark fin samples from 25 different local seafood and Traditional Chinese Medicine shops. From this, we identified 27 species of shark, three species are listed as Critically Endangered, four as Endangered and ten as Vulnerable by the International Union for Conservation of Nature (IUCN). Six species are listed on CITES Appendix II, meaning that trade must be controlled in order to avoid utilization incompatible with their survival. All dried fins collected in this study were sold under the generic term "shark fin"; this vague labelling prevents accurate monitoring of the species involved in the trade, the effective implementation of policy and conservation strategy, and could unwittingly expose consumers to unsafe concentrations of toxic metals. The top five most frequently encountered species in this study are Rhizoprionodon acutus, Carcharhinus falciformis, Galeorhinus galeus, Sphyrna lewini and Sphyrna zygaena. Accurate labelling that indicates the species of shark that a fin came from, along with details of where it was caught, allows consumers to make an informed choice on the products they are consuming. Doing this could facilitate the avoidance of species that are endangered, and similarly the consumer can choose not to purchase species that are documented to contain elevated concentrations of toxic metals.


Asunto(s)
Especies en Peligro de Extinción , Tiburones , Animales , Tiburones/genética , Conservación de los Recursos Naturales , Código de Barras del ADN Taxonómico , Explotaciones Pesqueras , Alimentos Marinos , ADN , Intoxicación por Metales Pesados
11.
Curr Biol ; 34(15): 3582-3590.e4, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047735

RESUMEN

The white shark (Carcharodon carcharias) (Linnaeus, 1758), an iconic apex predator occurring in all oceans,1,2 is classified as Vulnerable globally3-with global abundance having dropped to 63% of 1970s estimates,4-and as Critically Endangered in Europe.5 Identification of evolutionary significant units and their management are crucial for conservation,6 especially as the white shark is facing various but often region-specific anthropogenic threats.7,8,9,10,11 Assessing connectivity in a cosmopolitan marine species requires worldwide sampling and high-resolution genetic markers.12 Both are lacking for the white shark, with studies to date typified by numerous but geographically limited sampling, and analyses relying largely on relatively small numbers of nuclear microsatellites,13,14,15,16,17,18,19 which can be plagued by various genotyping artefacts and thus require cautious interpretation.20 Sequencing and computational advances are finally allowing genomes21,22,23 to be leveraged into population studies,24,25,26,27 with datasets comprising thousands of single-nucleotide polymorphisms (SNPs). Here, combining target gene capture (TGC)28 sequencing (89 individuals, 4,000 SNPs) and whole-genome re-sequencing (17 individuals, 391,000 SNPs) with worldwide sampling across most of the distributional range, we identify three genetically distinct allopatric lineages (North Atlantic, Indo-Pacific, and North Pacific). These diverged 100,000-200,000 years ago during the Penultimate Glaciation, when low sea levels, different ocean currents, and water temperatures produced significant biogeographic barriers. Our results show that without high-resolution genomic analyses of samples representative of a species' range,12 the true extent of diversity, presence of past and contemporary barriers to gene flow, subsequent speciation, and local evolutionary events will remain enigmatic.


Asunto(s)
Tiburones , Tiburones/genética , Tiburones/clasificación , Animales , Genoma , Polimorfismo de Nucleótido Simple , Filogenia , Blanco
12.
Evolution ; 78(8): 1405-1425, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38745524

RESUMEN

Estimating how traits evolved and impacted diversification across the tree of life represents a critical topic in ecology and evolution. Although there has been considerable research in comparative biology, large parts of the tree of life remain underexplored. Sharks are an iconic clade of marine vertebrates, and key components of marine ecosystems since the early Mesozoic. However, few studies have addressed how traits evolved or whether they impacted their extant diversity patterns. Our study aimed to fill this gap by reconstructing the largest time-calibrated species-level phylogeny of sharks and compiling an exhaustive database for ecological (diet, habitat) and biological (reproduction, maximum body length) traits. Using state-of-the-art models of evolution and diversification, we outlined the major character shifts and modes of trait evolution across shark species. We found support for sequential models of trait evolution and estimated a small to medium-sized lecithotrophic and coastal-dwelling most recent common ancestor for extant sharks. However, our exhaustive hidden traits analyses do not support trait-dependent diversification for any examined traits, challenging previous works. This suggests that the role of traits in shaping sharks' diversification dynamics might have been previously overestimated and should motivate future macroevolutionary studies to investigate other drivers of diversification in this clade.


Asunto(s)
Evolución Biológica , Filogenia , Tiburones , Tiburones/genética , Tiburones/fisiología , Animales , Ecosistema , Tamaño Corporal , Rasgos de la Historia de Vida , Dieta
13.
Environ Sci Pollut Res Int ; 31(10): 15571-15579, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300493

RESUMEN

Pakistan has natural freshwater resources acting as a hotspot for diverse fish fauna. However, this aquatic fauna is declining at an alarming rate due to over-exploitation, habitat degradation, water pollution, climate change, and certain anthropogenic activities. The freshwater shark, Wallago attu, is a popular edible catfish inhabiting these freshwater ecosystems. Habitat degradation, overfishing, and human activities are heavily impacting the natural population of this species. So, sound knowledge about its population structure is necessary for its proper management in natural waters. The current study involves utilizing two mtDNA markers (COI, Cytb) to assess the genetic structure and differentiation among W. attu populations of Pakistani Rivers. Genetic variability analysis indicated a high haplotype (0.343 ± 0.046-0.870 ± 0.023) and low nucleotide diversity (0.0024 ± 0.012-0.0038 ± 0.018) among single and combined gene sequences, respectively. Overall, River Indus was populated with more diverse fauna of Wallago attu as compared to River Chenab and River Ravi. Population pairwise, Fst values (0.40-0.61) were found to be significantly different (p < 0.01) among three Riverine populations based upon combined gene sequences. The gene flow for the combined gene (COI + Cytb) dataset among three populations was less than 1.0. The transition/transversion bias value R (0.58) was calculated for testing of neutral evolution, and it declared low genetic polymorphism among natural riverine populations of Wallago attu. The current study's findings would be meaningful in planning the management and conservation of this economically important catfish in future.


Asunto(s)
Bagres , Tiburones , Animales , Humanos , Ecosistema , Tiburones/genética , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Agua Dulce , Estructuras Genéticas , Bagres/genética , Bagres/metabolismo
14.
PLoS One ; 19(6): e0305608, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38885253

RESUMEN

The blue shark, Prionace glauca, is the most abundant pelagic shark in the open ocean but its vulnerability remains poorly understood while being one of the most fecund sharks. In the Mediterranean Sea, the blue shark is listed as Critically Endangered (CR) by the International Union for Conservation of Nature. The species is facing a strong decline due to fishing, and scientific data regarding its genetic structure and vulnerability are still lacking. Here, we investigated the genetic diversity, demographic history, and population structure of the blue shark within the Mediterranean Sea, from samples of the Gulf of Lion and Malta, using sequences of the mtDNA control region and 22 microsatellite markers. We also compared our mitochondrial data to previous studies to examine the Atlantic-Mediterranean population structure. We assessed the blue shark's genetic vulnerability in the Mediterranean basin by modelling its effective population size. Our results showed a genetic differentiation between the Atlantic and the Mediterranean basins, with limited gene flow between the two areas, and distinct demographic histories making the Mediterranean population an independent management unit. Within the Mediterranean Sea, no sign of population structure was detected, suggesting a single population across the Western and Central parts of the sea. The estimated effective population size was low and highlighted the high vulnerability of the Mediterranean blue shark population, as the estimated size we calculated might not be sufficient to ensure the long-term persistence of the population. Our data also provide additional evidence that the Gulf of Lion area acts as a nursery for P. glauca, where protection is essential for the conservation strategy of the species in the Mediterranean.


Asunto(s)
ADN Mitocondrial , Especies en Peligro de Extinción , Variación Genética , Densidad de Población , Tiburones , Animales , Tiburones/genética , Mar Mediterráneo , ADN Mitocondrial/genética , Repeticiones de Microsatélite/genética , Genética de Población , Conservación de los Recursos Naturales/métodos
15.
Forensic Sci Int Genet ; 72: 103087, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996566

RESUMEN

Species identification following shark-related incidents is critical for effective incident management and for collecting data to inform shark-bite mitigation strategies. Witness statements are not always reliable, and species identification is often ambiguous or missing. Alternative methods for species identification include morphological assessments of bite marks, analysis of collected teeth at the scene of the incident, and genetic approaches. However, access to appropriate collection media and robust genetic assays have limited the use of genetic technologies. Here, we present a case study that facilitated a unique opportunity to compare the effectiveness of medical gauze readily available in first-aid kits, and forensic-grade swabs in collecting genetic material for shark-species identification. Sterile medical gauze and forensic-grade swabs were used to collect transfer DNA from the bite margins on a bitten surf ski which were compared to a piece of shark tissue embedded along the bite margin. Witness accounts and the characteristics of the bite mark impressions inferred the involvement of a Carcharodon carcharias (white shark). The morphology of a tooth found on the boat that picked up the surf ski, however, suggested it belonged to an Orectolobus spp. (wobbegong). Genetic analysis of DNA transferred from the shark to the surf ski included the application of a broad-target nested PCR assay followed by Sanger sequencing, with white shark contribution to the 'total sample DNA' determined with a species-specific qPCR assay. The results of the genetic analyses were congruent between sampling methods with respect to species identification and the level of activity inferred by the donor-specific DNA contribution. These data also supported the inferences drawn from the bite mark morphology. DNA from the recovered tooth was PCR amplified with a wobbegong-specific primer pair designed for this study to corroborate the tooth's morphological identification. Following the confirmation of gauze used for sampling in the case study event, two additional isolated incidents occurred and were sampled in situ using gauze, as typically found in a first-aid kit, by external personnel. DNA extracted from these gauze samples resulted in the identification of a white shark as the donor of the DNA collected from the bite marks in both instances. This study, involving three incidents separated by time and location, represents the seminal application of gauze as a sampling media after critical human-shark interactions and strongly supports the practical implementation of these methods in the field.


Asunto(s)
Mordeduras y Picaduras , ADN , Tiburones , Tiburones/genética , Animales , ADN/genética , Humanos , Especificidad de la Especie , Manejo de Especímenes , Reacción en Cadena de la Polimerasa , Dermatoglifia del ADN , Diente/química
16.
Cell Genom ; 4(8): 100607, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38996479

RESUMEN

Chondrichthyes is an important lineage to reconstruct the evolutionary history of vertebrates. Here, we analyzed genome synteny for six chondrichthyan chromosome-level genomes. Our comparative analysis reveals a slow evolutionary rate of chromosomal changes, with infrequent but independent fusions observed in sharks, skates, and chimaeras. The chondrichthyan common ancestor had a proto-vertebrate-like karyotype, including the presence of 18 microchromosome pairs. The X chromosome is a conversed microchromosome shared by all sharks, suggesting a likely common origin of the sex chromosome at least 181 million years ago. We characterized the Y chromosomes of two sharks that are highly differentiated from the X except for a small young evolutionary stratum and a small pseudoautosomal region. We found that shark sex chromosomes lack global dosage compensation but that dosage-sensitive genes are locally compensated. Our study on shark chromosome evolution enhances our understanding of shark sex chromosomes and vertebrate chromosome evolution.


Asunto(s)
Evolución Molecular , Genómica , Cariotipo , Cromosomas Sexuales , Tiburones , Animales , Tiburones/genética , Genómica/métodos , Cromosomas Sexuales/genética , Masculino , Femenino , Sintenía/genética , Filogenia , Compensación de Dosificación (Genética) , Cromosoma X/genética , Genoma/genética
17.
Curr Biol ; 34(12): 2773-2781.e3, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38843829

RESUMEN

Across vertebrates, live bearing evolved at least 150 times from ancestral egg laying into diverse forms and degrees of prepartum maternal investment.1,2 A key question is how reproductive diversity arose and whether reproductive diversification underlies species diversification.3,4,5,6,7,8,9,10,11 To test this, we evaluate the most basal jawed vertebrates: the sharks, rays, and chimaeras, which have one of the greatest ranges of reproductive and ecological diversity among vertebrates.2,12 We reconstruct the sequence of reproductive mode evolution across a phylogeny of 610 chondrichthyans.13 We reveal egg laying as ancestral, with live bearing evolving at least seven times. Matrotrophy evolved at least 15 times, with evidence of one reversal. In sharks, transitions to live bearing and matrotrophy are more prevalent in larger-bodied tropical species. Further, the evolution of live bearing is associated with a near doubling of the diversification rate, but there is only a small increase associated with the appearance of matrotrophy. Although pre-copulatory sexual selection is associated with increased rates of speciation in teleosts,3 sexual size dimorphism in chondrichthyans does not appear to be related to sexual selection,14,15 and instead we find increased rates of speciation associated with the colonization of novel habitats. This highlights a potential key difference between chondrichthyans and other fishes, specifically a slower rate of evolution of reproductive isolation following speciation, suggesting different rate-limiting mechanisms for diversification between these clades.16 The chondrichthyan diversification and radiation, particularly throughout shallow tropical shelf seas and oceanic pelagic habitats, appear to be associated with the evolution of live bearing and proliferation of a wide range of maternal investment in developing offspring.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Filogenia , Tiburones , Rajidae , Animales , Tiburones/fisiología , Tiburones/anatomía & histología , Tiburones/genética , Rajidae/fisiología , Rajidae/genética , Rajidae/anatomía & histología , Femenino , Reproducción , Masculino
18.
Neotrop. ichthyol ; 15(4): e170097, 2017. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-895108

RESUMEN

A fundamental challenge for both sustainable fisheries and biodiversity protection in the Neotropics is the accurate determination of species identity. The biodiversity of the coastal sharks of Guyana is poorly understood, but these species are subject to both artisanal fishing as well as harvesting by industrialized offshore fleets. To determine what species of sharks are frequently caught and consumed along the coastline of Guyana, we used DNA barcoding to identify market specimens. We sequenced the mitochondrial co1 gene for 132 samples collected from six markets, and compared our sequences to those available in the Barcode of Life Database (BOLD) and GenBank. Nearly 30% of the total sample diversity was represented by two species of Hammerhead Sharks (Sphyrna mokarran and S. lewini), both listed as Endangered by the International Union for Conservation of Nature (IUCN). Other significant portions of the samples included Sharpnose Sharks (23% - Rhizoprionodon spp.), considered Vulnerable in Brazilian waters due to unregulated gillnet fisheries, and the Smalltail Shark (17% - Carcharhinus porosus). We found that barcoding provides efficient and accurate identification of market specimens in Guyana, making this study the first in over thirty years to address Guyana's coastal shark biodiversity.(AU)


Um desafio fundamental para a pesca sustentável e a proteção da biodiversidade nos neotrópicos é a identificação precisa das espécies. A biodiversidade dos tubarões costeiros da Guiana é pouco compreendida, porém essas espécies estão sujeitas tanto à pesca artesanal quanto à pesca industrializada não costeira. Para determinar quais espécies de tubarões são frequentemente capturadas e consumidas ao longo do litoral da Guiana, utilizamos DNA barcoding para identificar espécimes comumente encontrados e adquiridos em mercados. Nós sequenciamos o gene mitocondrial coI para 132 espécimes adquiridos de seis mercados e comparamos estas sequências com as disponíveis no Barcode of Life Database (BOLD) e GenBank. Quase 30% da diversidade total amostrada foi constituída por duas espécies de tubarões martelo (Sphyrna mokarran e S. lewini), ambas listadas como espécies ameaçadas pela UICN. Outras porções significativas da amostragem incluem Cações-Frango (23% - Rhizoprionodon spp.), considerados vulneráveis em águas brasileiras, devido a pesca de arrasto não regulamentada, e o Cação-azeiteiro (17% - Carcharhinus porosus). Descobrimos que o barcoding é uma forma identificação eficiente e precisa para espécimes de mercado na Guiana, tornando este estudo o pioneiro na documentação da biodiversidade dos tubarões costeiros da Guiana.(AU)


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Tiburones/clasificación , Tiburones/genética , Biodiversidad , Elasmobranquios
19.
Neotrop. ichthyol ; 7(2): 213-216, Apr.-June 2009. ilus, tab
Artículo en Inglés | LILACS | ID: lil-520417

RESUMEN

Sharks of the genus Rhizoprionodon can be considered some of the most important predators along the trophic coastal marine ecosystems and represent an important economic resource for the small-scale fisheries, especially on the Brazilian coastline. In order to analyze the population structure of the shark Rhizoprionodon lalandii of São Paulo, Southeastern coast of Brazil, levels of genetic diversity were identified by nucleotide sequence analyses of the mitochondrial DNA control region. The results obtained from this study present moderate values of haplotype diversity and low nucleotide diversity. Although the AMOVA tests (ΦST = 0.08394, P < 0.01) had shown slightly differences among the studied samples, evidence for the occurrence of population structuring was not found, which may be a general feature of sharks living in coastal areas.


Tubarões do gênero Rhizoprionodon são considerados predadores de grande importância ao longo da cadeia trófica nos ecossistemas costeiros e marinhos, também representando um importante recurso econômico para a pesca, especialmente no litoral brasileiro. A fim de analisar a estrutura populacional do tubarão Rhizoprionodon lalandii no litoral de São Paulo, sudeste do Brasil, foram identificados os níveis de diversidade genética a partir da análise de sequências nucleotídicas da região controladora do DNA mitocondrial. Os dados obtidos neste estudo apresentam valores moderados de diversidade haplotípica e baixos índices de diversidade nucleotídica. Embora os testes de AMOVA (ΦST = 0,08394, P < 0,01) tenham revelado uma pequena diferença entre as amostras estudadas, evidências sobre a ocorrência de estruturação populacional não foram encontradas o que pode representar uma característica geral para tubarões vivendo em áreas costeiras.


Asunto(s)
Animales , ADN Mitocondrial/análisis , Variación Genética , Reacción en Cadena de la Polimerasa/métodos , Secuencia de Bases/genética , Tiburones/genética , Brasil , Densidad de Población
20.
Genet. mol. biol ; 31(1,suppl): 361-365, 2008. ilus
Artículo en Inglés | LILACS | ID: lil-484611

RESUMEN

Sharks are suffering from intensive exploitation by worldwide fisheries leading to a severe decline in several populations in the last decades. The lack of biological data on a species-specific basis, associated with a k-strategist life history make it difficult to correctly manage and conserve these animals. The aim of the present study was to develop a DNA-based procedure to discriminate shark species by means of a rapid, low cost and easily applicable PCR analysis based on 5S rDNA repeat units amplification, in order to contribute conservation management of these animals. The generated agarose electrophoresis band patterns allowed to unequivocally distinguish eight shark species. The data showed for the first time that a simple PCR is able to discriminate elasmobranch species. The described 5S rDNA PCR approach generated species-specific genetic markers that should find broad application in fishery management and trade of sharks and their subproducts.


Asunto(s)
Animales , Reacción en Cadena de la Polimerasa , Tiburones/genética , ADN Ribosómico , Marcadores Genéticos , Tiburones/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA