RESUMEN
A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.
Asunto(s)
Técnicas Citológicas , Técnicas Genéticas , ARN , Animales , Transporte Biológico , Mamíferos/metabolismo , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Virus/genética , Tipificación Molecular , Análisis de Secuencia de ARNRESUMEN
Metastasis is a multistep process by which cancer cells break away from their original location and spread to distant organs, and is responsible for the vast majority of cancer-related deaths. Preventing early metastatic dissemination would revolutionize the ability to fight cancer. Unfortunately, the relatively poor understanding of the molecular underpinnings of metastasis has hampered the development of effective anti-metastatic drugs. Although it is now accepted that disseminating tumour cells need to acquire multiple competencies to face the many obstacles they encounter before reaching their metastatic site(s), whether these competencies are acquired through an accumulation of metastasis-specific genetic alterations and/or non-genetic events is often debated. Here we review a growing body of literature highlighting the importance of both genetic and non-genetic reprogramming events during the metastatic cascade, and discuss how genetic and non-genetic processes act in concert to confer metastatic competencies. We also describe how recent technological advances, and in particular the advent of single-cell multi-omics and barcoding approaches, will help to better elucidate the cross-talk between genetic and non-genetic mechanisms of metastasis and ultimately inform innovative paths for the early detection and interception of this lethal process.
Asunto(s)
Metástasis de la Neoplasia , Neoplasias , Animales , Humanos , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Análisis de la Célula Individual , Multiómica , Tipificación Molecular , Reprogramación CelularRESUMEN
Most deaths from cancer are explained by metastasis, and yet large-scale metastasis research has been impractical owing to the complexity of in vivo models. Here we introduce an in vivo barcoding strategy that is capable of determining the metastatic potential of human cancer cell lines in mouse xenografts at scale. We validated the robustness, scalability and reproducibility of the method and applied it to 500 cell lines1,2 spanning 21 types of solid tumour. We created a first-generation metastasis map (MetMap) that reveals organ-specific patterns of metastasis, enabling these patterns to be associated with clinical and genomic features. We demonstrate the utility of MetMap by investigating the molecular basis of breast cancers capable of metastasizing to the brain-a principal cause of death in patients with this type of cancer. Breast cancers capable of metastasizing to the brain showed evidence of altered lipid metabolism. Perturbation of lipid metabolism in these cells curbed brain metastasis development, suggesting a therapeutic strategy to combat the disease and demonstrating the utility of MetMap as a resource to support metastasis research.
Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Metástasis de la Neoplasia/patología , Especificidad de Órganos , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Procesamiento Automatizado de Datos , Femenino , Xenoinjertos , Humanos , Metabolismo de los Lípidos/genética , Ratones , Tipificación Molecular , Mutación , Metástasis de la Neoplasia/genética , Trasplante de Neoplasias , Proyectos PilotoRESUMEN
SUMMARY: Tau-typing is an integrated analysis pipeline for identifying genes or genomic segments whose phylogenetic resolving power most closely resembles the genome-wide resolving power of an input collection of genomes using the Kendall Tau rank correlation statistic. The pipeline is implemented in Nextflow and uses Docker and Singularity containers to ensure reliable scalability and reproducibility of results. This pipeline is particularly suitable for organisms for which whole-genome sequencing remains unaffordable or unscalable for routine applications, such as protozoan parasites which are not amenable to laboratory culture-based methods. AVAILABILITY AND IMPLEMENTATION: Tau-typing is freely available at https://github.com/hseabolt/tautyping. The pipeline is implemented in Nextflow with Singularity support.
Asunto(s)
Genoma , Programas Informáticos , Filogenia , Reproducibilidad de los Resultados , Tipificación MolecularRESUMEN
In this work, the antibiotic resistance, biofilm formation capability, and clonal relatedness of 50 A. baumannii isolates collected from three hospitals in Ardabil city, Iran, were evaluated. Antibiotic sensitivity and biofilm formation of isolates were determined by disk diffusion and microtiter-plate methods, respectively. Molecular typing of isolates was also performed using repetitive sequence-based PCR (REP-PCR). The majority of isolates were resistant to cephems, aminoglycosides, and carbapenems, with 80 % classified as multi-drug resistant (MDR). While, only isolates collected from blood and tracheal were resistant to colistin. Additionally, 42 isolates (84 %) had biofilm formation capability. According to rep-PCR results, 34 isolates showed similar banding patterns, while 16 isolates had unique banding patterns. Finally, based on the molecular analysis, there was a direct relationship between biofilm formation and the antibiotic resistance of isolates. In other words, MDR isolates had a higher ability to form biofilm.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Infecciones por Acinetobacter/microbiología , Irán , Farmacorresistencia Bacteriana Múltiple/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Acinetobacter baumannii/fisiología , Tipificación Molecular , Reacción en Cadena de la Polimerasa , Colistina/farmacología , Adulto , Hospitales , Masculino , Femenino , Genotipo , Persona de Mediana EdadRESUMEN
This study aimed to map MDRO carriage and potential transmission within and between three Flemish tertiary care hospitals and their neighbouring nursing homes. A cross-sectional MDRO prevalence survey was organized between October 2017 and February 2019. Perianal swabs were cultured for detection of MDRO. Determination of clonal relatedness based on wgMLST allelic profiles was performed. The prevalence of MDRO in Belgian hospitals and NHs is on the rise, compared to previous studies, and transmission in and between institutions is observed. These results re-emphasize the need for a healthcare network-wide infection prevention strategy in which WGS of MDRO strains can be supportive.
Asunto(s)
Infección Hospitalaria , Casas de Salud , Humanos , Bélgica/epidemiología , Centros de Atención Terciaria , Estudios Transversales , Farmacorresistencia Bacteriana Múltiple , Bacterias , Tipificación Molecular , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiologíaRESUMEN
Candida krusei also known as Pichia kudriavzevii is a potentially multidrug-resistant yeast because it is intrinsically resistant to fluconazole and develops acquired resistance to echinocandins and polyenes. Here, we aim to provide a better understanding of the epidemiology and transmission modes of C. krusei infections by comparing invasive bloodstream (n = 35) and non-invasive vaginal (n = 20) C. krusei isolates. The genetic relatedness of the isolates was assessed using a newly described short tandem repeat (STR) analysis and their sensitivity to eight antifungal compounds was evaluated by antifungal susceptibility testing using the CLSI microbroth dilution method. All C. krusei isolates revealed unique STR genotypes, indicating the absence of clonal transmission in the study group. Furthermore, no drug-resistant or non-wild-type isolates were identified. Our findings demonstrated high resolution of STR genotyping for the detection and simultaneous genetic analysis of multiple C. krusei strains in clinical samples and excellent in vitro activity of common antifungal agents against invasive strains.
Asunto(s)
Antifúngicos , Candida , Pichia , Femenino , Animales , Antifúngicos/farmacología , Turquía , Farmacorresistencia Fúngica/genética , Tipificación Molecular/veterinaria , Pruebas de Sensibilidad Microbiana/veterinariaRESUMEN
Malassezia is a commensal that sometimes becomes pathogenic under the influence of diverse factors. Several species of Malassezia are difficult to culture, making traditional methods of identification challenging. The problem with molecular typing of Malassezia in association with seborrheic dermatitis/dandruff (SD/D) arises due to the unavailability of these fastidious yeast cultures. The aim of the study was to investigate the association between fluorescent amplified fragment length polymorphism (FAFLP) genotypes, disease state (SD/D), and the geographic distribution of M. globosa, M. restricta, and M. arunalokei. In total, 154 isolates representing M. globosa (n = 85), M. restricta (n = 55), and M. arunalokei (n = 14) from lesional/non-lesional areas of SD/D patients and healthy controls residing in the rural (n = 77) and urban (n = 77) areas of northern India were included. A strategy based on the FAFLP methodology was developed using two endonuclease enzymes (EcoRI and HindIII). M. globosa, M. restricta, and M. arunalokei formed 11, 3, and 2 FAFLP clusters, respectively. Disease-specific strains of M. restricta and M. arunalokei preferentially tend to cause SD/D. M. restricta and M. arunalokei showed less genetic variation. M.globosa showed higher genetic diversity. FAFLP clusters revealed the existence of geographically specific strains in M. restricta, M. arunalokei, and M. globosa. Our findings suggest that certain Malassezia strains are not only disease-specific but also geographically distinct.
The association of Malassezia with dandruff appears to be certain. Using the advanced technique, we determined that M. restricta and M. arunalokei are major species causing dandruff. There is also a difference in the specific molecular types affecting the rural and urban populations of India.
Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Dermatitis Seborreica , Genotipo , Malassezia , Epidemiología Molecular , Malassezia/genética , Malassezia/clasificación , Malassezia/aislamiento & purificación , Humanos , India/epidemiología , Dermatitis Seborreica/microbiología , Dermatitis Seborreica/epidemiología , Caspa/microbiología , Caspa/epidemiología , Masculino , Femenino , Técnicas de Tipificación Micológica , Dermatomicosis/microbiología , Dermatomicosis/epidemiología , Adulto , ADN de Hongos/genética , Tipificación Molecular , Población RuralRESUMEN
INTRODUCTION: Klebsiella pneumoniae is an opportunistic pathogen which is an important cause of hospital-acquired and antibiotic resistance infections. Therefore, this study aimed to determine the frequency of resistance to antibiotics, as well as the molecular typing of the associated isolates, and compare multiple-locus VNTR analysis (MLVA) and Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR) methods to specify the degree to which distinctions can be separated from each other. METHODS AND MATERIALS: One hundred K. pneumoniae isolates were obtained from different sources of infections from patients admitted to hospitals. Antibiotic susceptibility testing was then performed by applying the Kirby-Bauer disk diffusion method. Typing of K. pneumoniae was done by utilizing MLVA and ERIC-PCR methods. RESULTS: Eighty-six multidrug-resistant (MDR) K. pneumoniae isolates were identified, which resistance to ampicillin, trimethoprim/sulfamethoxazole, and ceftriaxone was the most frequent in the considered isolates (100, 93, and 93%, respectively). A total of 50 different antibiotic susceptibility patterns were observed among the MDR K. pneumonia, with the most frequent pattern being resistance to all antibiotics (12.79%) and resistance to all antibiotics except amikacin (10.47%). The isolates were then divided into 37 different MLVA types and seven clonal complexes were obtained from the minimum spanning tree analysis. Finally, the isolates were assigned to 38 different ERIC types. The discriminatory power of MLVA and ERIC methods also showed a value of 0.958, and 0.974. CONCLUSION: Both PCR-typing methods with phenotypic patterns can be useful for the epidemiological typing of K. pneumoniae isolates with the highest performance in discriminating isolates.
Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Pruebas de Sensibilidad Microbiana , Tipificación Molecular/métodos , Antibacterianos/farmacología , EnterobacteriaceaeRESUMEN
BACKGROUND: The main causes of hospital- and community-acquired urinary tract infections (UTIs) are a group of Escherichia coli (E. coli) strains with multiple virulence factors known as uropathogenic E. coli. METHODS AND RESULTS: One hundred E. coli isolates from the urine specimens of hospital- and community-acquired UTI patients were characterized based on their virulence factors and genetic relatedness using PCR and RAPDâPCR, respectively. Among all, the traT (71%), sitA (64%), ompT (54%), malX (49%), ibeA (44%), tsh (39%), hlyD (18%) and cnf1 (12%) genes had the highest to lowest frequencies, respectively. There was no significant difference between the frequency of tested virulence genes in E. coli isolates from inpatients and outpatients. The frequency of the hlyD gene was significantly greater in E. coli isolates from patients hospitalized in gynecology, dermatology and intensive care unit (ICU) wards than in those from other wards. Eight virulence gene patterns were common among the isolates of inpatients in different wards of the same hospital, of which five patterns belonged to the isolates of inpatients in the same ward. More E. coli isolates with similar virulence gene patterns and greater genetic similarity were found in female patients than in male patients. The analysis of the RAPDâPCR dendrograms revealed more genetic similarities among the E. coli isolates from inpatients than among those from outpatients. CONCLUSION: Our findings indicate the presence of a wide variety of virulence factors in E. coli isolates and the possibility of spreading the same clones in different wards of the hospital.
Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Masculino , Femenino , Infecciones por Escherichia coli/tratamiento farmacológico , Virulencia/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Infecciones Urinarias/tratamiento farmacológico , Hospitales , Tipificación Molecular , Factores de Virulencia/genética , Escherichia coli Uropatógena/genética , Antibacterianos/uso terapéuticoRESUMEN
INTRODUCTION: Wrestling, considered the national sport of Iran, has gained immense popularity among Iranians. Wrestlers frequently encounter skin conditions, with dermatophyte fungal infections, particularly tinea gladiatorum (TG), being a common issue. TG, caused by the Trichophyton genus, has emerged as a major health concern for wrestlers and other contact sport athletes worldwide. This study aimed to assess the genotypic diversity and antifungal susceptibility of Trichophyton tonsurans isolates responsible for TG in Iranian wrestlers from Mazandaran province, northern Iran. MATERIALS AND METHODS: A total of 60 clinical T. tonsurans isolates collected from various cities in Mazandaran, were included in the study. The isolates were identified through PCR-restriction fragment length polymorphism and sequencing methods. Genomic DNA was extracted from these isolates, and the non-transcribed spacer (NTS) region of ribosomal RNA (rRNA) was targeted for genotyping using newly designed primers. Haplotype analysis was performed to explore genetic diversity, and antifungal susceptibility to terbinafine (TRB) and itraconazole (ITC) was assessed. RESULTS: The results revealed five distinct NTS types: NTS-I, NTS-II, NTS-III, NTS-IV and NTS-V, with NTS-IV being the most prevalent. The distribution of NTS types varied across different cities, suggesting potential transmission patterns among wrestlers. Antifungal susceptibility testing showed that all isolates were susceptible to TRB, while one isolate demonstrated resistance to ITC. Genotypic diversity was not correlated with antifungal susceptibility, emphasising the importance of monitoring susceptibility to ensure effective treatment. Haplotype analysis highlighted significant genetic diversity among the T. tonsurans isolates. This diversity may be attributed to factors such as human-to-human transmission, geographic location and lifestyle changes. The study's findings underscore the need for comprehensive genotypic analysis to understand the epidemiology and evolution of T. tonsurans infections in athletes. CONCLUSION: In conclusion, this study provides valuable insights into the genotypic diversity and antifungal susceptibility of T. tonsurans isolates causing TG in Iranian wrestlers. The presence of multiple NTS types and varying susceptibility patterns highlights the complexity of T. tonsurans infections in this population. Further research is warranted to track the transmission routes and genetic evolution of T. tonsurans strains among wrestlers and develop effective control measures.
Asunto(s)
Arthrodermataceae , Pueblos de Medio Oriente , Tiña , Lucha , Humanos , Antifúngicos/farmacología , Arthrodermataceae/genética , ADN Ribosómico , Irán/epidemiología , Itraconazol/farmacología , Tipificación Molecular , Terbinafina , Tiña/tratamiento farmacológico , Tiña/epidemiología , Tiña/etiología , Tiña/microbiología , TrichophytonRESUMEN
Cat-transmitted sporotrichosis is caused by the emerging fungal pathogen Sporothrix brasiliensis and constitutes a significant public health issue that affects people living in resource-poor urban centers in Brazil. The lack of knowledge about transmission dynamics makes it difficult to propose public health policies to contain the advance of sporotrichosis. We describe the recent emergence of 1,176 cases of sporotrichosis in cats (2016 to 2021) in the metropolitan region of Recife, Brazil, leading to significant zoonotic transmission and an overwhelming occurrence of S. brasiliensis as the etiological agent. Most cases were from cats in the cities of Olinda (408/1,176; 34.70%), Jaboatão dos Guararapes (332/1,176; 28.23%), and Recife (237/1,176; 20.15%). Molecular typing using amplified fragment length polymorphism (EcoRI-GA/MseI-AG) revealed low polymorphic information content (PIC = 0.2499) and heterozygosity (H = 0.2928), typical of an outbreak scenario. Dendrogram and multivariate cluster analysis revealed that isolates from Pernambuco are closely related to Rio de Janeiro isolates. We report a substantial occurrence of MAT1-2 idiomorphs in the metropolitan region of Recife (0:60 ratio; χ2 = 60.000, P < 0.0001). The limited population differentiation and genetic diversity of the isolates from Pernambuco suggest a recent introduction, possibly via a founder effect, from the parental population in Rio de Janeiro. Our findings emphasize the critical importance of molecular surveillance of S. brasiliensis for outbreak response. A comprehensive one-health strategy is mandatory to control the spread of cat-transmitted sporotrichosis driven by S. brasiliensis, encompassing sanitary barriers, quick diagnosis, and treatment.
Asunto(s)
Enfermedades de los Gatos , Sporothrix , Esporotricosis , Esporotricosis/transmisión , Esporotricosis/microbiología , Esporotricosis/veterinaria , Esporotricosis/epidemiología , Gatos , Brasil/epidemiología , Sporothrix/genética , Sporothrix/aislamiento & purificación , Sporothrix/clasificación , Animales , Enfermedades de los Gatos/microbiología , Enfermedades de los Gatos/transmisión , Enfermedades de los Gatos/epidemiología , Tipificación Molecular , Zoonosis/transmisión , Zoonosis/microbiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/epidemiología , Genotipo , FilogeniaRESUMEN
AIMS: To apply molecular typing to DNA isolated from historical samples to determine Leptospira spp. infecting farmed and wild mammals in New Zealand. MATERIALS AND METHODS: DNA samples used in this study were extracted from urine, serum or kidney samples (or Leptospira spp. cultures isolated from them) collected between 2007 and 2017 from a range of domestic and wildlife mammalian species as part of different research projects at Massey University. Samples were included in the study if they met one of three criteria: samples that tested positive with a lipL32 PCR for pathogenic Leptospira; samples that tested negative by lipL32 PCR but were recorded as positive to PCR for pathogenic Leptospira in the previous studies; or samples that were PCR-negative in all studies but were from animals with positive agglutination titres against serogroup Tarassovi. DNA samples were typed using PCR that targeted either the glmU or gyrB genetic loci. The resulting amplicons were sequenced and typed relative to reference sequences. RESULTS: We identified several associations between mammalian hosts and Leptospira strains/serovars that had not been previously reported in New Zealand. Leptospira borgpetersenii strain Pacifica was found in farmed red deer (Cervus elaphus) samples, L. borgpetersenii serovars Balcanica and Ballum were found in wild red deer samples, Leptospira interrogans serovar Copenhageni was found in stoats (Mustela erminea) and brushtail possums (Trichosurus vulpecula), and L. borgpetersenii was found in a ferret (Mustela putorius furo). Furthermore, we reconfirmed previously described associations including dairy cattle with L. interrogans serovars Copenhageni and Pomona and L. borgpetersenii serovars Ballum, Hardjo type bovis and strain Pacifica, sheep with L. interrogans serovar Pomona and L. borgpetersenii serovar Hardjo type bovis, brushtail possum with L. borgpetersenii serovar Balcanica, farmed deer with L. borgpetersenii serovar Hardjo type bovis and hedgehogs (Erinaceus europaeus) with L. borgpetersenii serovar Ballum. CONCLUSIONS: This study provides an updated summary of host-Leptospira associations in New Zealand and highlights the importance of molecular typing. Furthermore, strain Pacifica, which was first identified as Tarassovi using serological methods in dairy cattle in 2016, has circulated in animal communities since at least 2007 but remained undetected as serology is unable to distinguish the different genotypes. CLINICAL RELEVANCE: To date, leptospirosis in New Zealand has been diagnosed with serological typing, which is deficient in typing all strains in circulation. Molecular methods are necessary to accurately type strains of Leptospira spp. infecting mammals in New Zealand.
Asunto(s)
Enfermedades de los Bovinos , Ciervos , Leptospira , Leptospirosis , Enfermedades de las Ovejas , Humanos , Bovinos , Animales , Ovinos , Serogrupo , Nueva Zelanda/epidemiología , Hurones , Leptospirosis/epidemiología , Leptospirosis/veterinaria , Animales Salvajes , ADN , Tipificación Molecular/veterinariaRESUMEN
This study was conducted for identifying phylogenetic relationships between 15 scab-causing Streptomyces species including S. bottropensis, S. europaeiscabiei, S. scabiei, S. stelliscabiei and, other 11 Streptomyces sp. All of the strains were originally isolated from symptomatic potatoes in Erzurum Province, The Eastern Anatolia Region of Turkey. Some morphological and biochemical properties of the strains were defined in our former research. Then, 16 s rRNA regions of them were sequenced. After the sequence data assembly, phylogenetic analyzes were performed. The phylogenetic analyses revealed that the strains are involved in the same major group and, substantially similar to reference strains. Additionally, some subgroup formations were also recorded. Moreover, Repetitive element-based PCR (Rep-PCR), Enterobacterial repetitive intergenic consensus (ERIC-PCR), and BOX-PCR fingerprinting molecular typing methods were used for as molecular typing methods. According to our knowledge, this is the first report on phylogenetic relationships of scab-causing Streptomyces species from Turkey. However, the identification of most pathogenic strains remained at the species level.
Asunto(s)
Enterobacteriaceae , Streptomyces , Turquía , Filogenia , Tipificación Molecular , Streptomyces/genéticaRESUMEN
BACKGROUND: Escherichia coli is the leading pathogen responsible for urinary tract infection (UTI) and recurrent UTI (RUTI). Few studies have dealt with the characterization of host and bacteria in RUTI caused by E. coli with genetically identical or different strains. This study aimed to investigate the host and bacterial characteristics of E. coli RUTI based on molecular typing. RESULTS: Patients aged 20 years or above who presented with symptoms of UTI in emergency department or outpatient clinics between August 2009 and December 2010 were enrolled. RUTI was defined as patients had 2 or more infections in 6 months or 3 or more in 12 months during the study period. Host factors (including age, gender, anatomical/functional defect, and immune dysfunction) and bacterial factors (including phylogenicity, virulence genes, and antimicrobial resistance) were included for analysis. There were 41 patients (41%) with 91 episodes of E. coli RUTI with highly related PFGE (HRPFGE) pattern (pattern similarity > 85%) and 58 (59%) patients with 137 episodes of E. coli RUTI with different molecular typing (DMT) pattern, respectively. There was a higher prevalence of phylogenetic group B2 and neuA and usp genes in HRPFGE group if the first episode of RUTI caused by HRPFGE E. coli strains and all episodes of RUTI caused by DMT E. coli strains were included for comparison. The uropathogenic E. coli (UPEC) strains in RUTI were more virulent in female gender, age < 20 years, neither anatomical/ functional defect nor immune dysfunction, and phylogenetic group B2. There were correlations among prior antibiotic therapy within 3 months and subsequent antimicrobial resistance in HRPFGE E. coli RUTI. The use of fluoroquinolones was more likely associated with subsequent antimicrobial resistance in most types of antibiotics. CONCLUSIONS: This study demonstrated that the uropathogens in RUTI were more virulent in genetically highly-related E. coli strains. Higher bacterial virulence in young age group (< 20 years) and patients with neither anatomical/functional defect nor immune dysfunction suggests that virulent UPEC strains are needed for the development of RUTI in healthy populations. Prior antibiotic therapy, especially the fluoroquinolones, within 3 months could induce subsequent antimicrobial resistance in genetically highly-related E. coli RUTI.
Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Femenino , Infecciones por Escherichia coli/microbiología , Filogenia , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Tipificación Molecular , Bacterias/genética , Fluoroquinolonas , Factores de Virulencia/genéticaRESUMEN
BACKGROUND: There is a paucity of Neisseria gonorrhoeae antimicrobial resistance data from resource-constrained settings because of the lack of diagnostic testing and limited scale of surveillance programs. This study aimed to determine the antimicrobial resistance profile of N. gonorrhoeae in the rural Eastern Cape province of South Africa. METHODS: Specimens for N. gonorrhoeae culture were obtained from men with urethral discharge and women with vaginal discharge attending primary health care facilities. Direct inoculation of the agar plates was performed followed by culture and drug susceptibility testing using the Etest at the laboratory. Whole-genome sequencing of the isolates was performed to identify resistance-determining variants. RESULTS: One hundred N. gonorrhoeae isolates were obtained. Most strains were nonsusceptible to ciprofloxacin (76%), tetracycline (75%), and penicillin G (72%). The gyrA S91F mutation was present in 68 of 72 ciprofloxacin-resistant isolates (94%), with concurrent parC mutations in 47 of 68 (69%); gyrA I250M was the only mutation in 4 other resistant strains. One azithromycin-resistant isolate was identified with a minimal inhibitory concentration (MIC) of 8.0 mg/L and the 23S rDNA gene mutation C2597T. The median MIC of cefixime was 0.016 mg/L (range, 0.016-0.064 mg/L), and that of ceftriaxone was 0.016 mg/L (range, 0.016 mg/L). Whole-genome sequencing showed 58 sequence types as revealed in N. gonorrhoeae sequence typing for antimicrobial resistance and 70 sequence types in N. gonorrhoeae multiantigen sequence typing. CONCLUSIONS: This study confirmed high rates of N. gonorrhoeae antimicrobial resistance to ciprofloxacin, penicillin G, and tetracycline in our setting. The MICs of cephalosporins are reassuring for ceftriaxone use in syndromic treatment regimens, but the identification of azithromycin resistance warrants further attention.
Asunto(s)
Gonorrea , Mycobacterium tuberculosis , Masculino , Femenino , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Neisseria gonorrhoeae/genética , Azitromicina/farmacología , Azitromicina/uso terapéutico , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Pruebas de Sensibilidad Microbiana , Sudáfrica/epidemiología , Farmacorresistencia Bacteriana/genética , Mycobacterium tuberculosis/genética , Gonorrea/tratamiento farmacológico , Gonorrea/epidemiología , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Tetraciclina/farmacología , Tetraciclina/uso terapéutico , Penicilina G/uso terapéutico , Tipificación MolecularRESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is considered one of the most common cancers, characterized by low early detection and high mortality rates, and is a global health challenge. Immunogenic cell death (ICD) is defined as a specific type of regulated cell death (RCD) capable of reshaping the tumor immune microenvironment by releasing danger signals that trigger immune responses, which would contribute to immunotherapy. METHODS: The ICD gene sets were collected from the literature. We collected expression data and clinical information from public databases for the HCC samples in our study. Data processing and mapping were performed using R software to analyze the differences in biological characteristics between different subgroups. The expression of the ICD representative gene in clinical specimens was assessed by immunohistochemistry, and the role of the representative gene in HCC was evaluated by various in vitro assays, including qRT-PCR, colony formation, and CCK8 assay. Lasso-Cox regression was used to screen prognosis-related genes, and an ICD-related risk model (ICDRM) was constructed. To improve the clinical value of ICDRM, Nomograms and calibration curves were created to predict survival probabilities. Finally, the critical gene of ICDRM was further investigated through pan-cancer analysis and single-cell analysis. RESULTS: We identified two ICD clusters that differed significantly in terms of survival, biological function, and immune infiltration. As well as assessing the immune microenvironment of tumors in HCC patients, we demonstrate that ICDRM can differentiate ICD clusters and predict the prognosis and effectiveness of therapy. High-risk subpopulations are characterized by high TMB, suppressed immunity, and poor survival and response to immunotherapy, whereas the opposite is true for low-risk subpopulations. CONCLUSIONS: This study reveals the potential impact of ICDRM on the tumor microenvironment (TME), immune infiltration, and prognosis of HCC patients, but also a potential tool for predicting prognosis.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Muerte Celular Inmunogénica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Tipificación Molecular , Calibración , Microambiente Tumoral/genética , PronósticoRESUMEN
Campylobacter is regarded as the leading cause of zoonotic diseases and Campylobacter jejuni (C. jejuni) is one of the predominant pathogenic species. To track C. jejuni infections, various genotyping methods have been used. In this study, amplified intergenic locus polymorphism (AILP) was used to type C. jejuni for the first time. To confirm its feasibility, pulsed-field gel electrophoresis (PFGE) was performed as a control, and the results obtained by the AILP and PFGE methods were compared. Fifty-one isolates were resolved into 34 and 29 different genotypes with Simpson's indices of 0.976 and 0.967 using the AILP and PFGE methods, respectively. The adjusted Rand coefficient of the two approaches was as high as 0.845. In summary, the data showed that the two genotyping methods were similar for discriminating isolates and were both appropriate methods to distinguish whether two isolates were indistinguishable, but the AILP was faster and less costly than PFGE. Therefore, the AILP is a reliable, rapid, and highly discriminative method to genotype C. jejuni collected from poultry meat, which is helpful to effectively monitor C. jejuni.
Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Animales , Campylobacter jejuni/genética , Electroforesis en Gel de Campo Pulsado , Tipificación Molecular , Polimorfismo Genético , Genotipo , Pollos , Técnicas de Tipificación Bacteriana/métodosRESUMEN
Cryptococcus neoformans and C. gattii species complexes (phylum: Basidiomycota) are environmental yeasts and are the main cause of human cryptococcosis worldwide. The most recent molecular typing studies in Latin America have focused on the intertropical region. Thus, this study aimed to update the knowledge of human cryptococcosis in the South American temperate region. We obtained and analyzed 116 C. neoformans/C. gattii species complexes isolates from the Public Health Surveillance Laboratory between 2008-2013 and 2017-2021 (C. gattii species complex = 1 and C. neoformans species complex = 115). The average patient age was 45 years, with an overall male:female ratio of 3.1:1. The proportion of HIV-negative patients was significantly higher in the second study period. Restriction fragment length polymorphism typing of URA5 gene revealed that the C. neoformans species complex comprised 75.7% VNI, 2.6% VNII, 0.9% VNIII, 1.7% VNIV, 17.4% VNII/VNIV hybrids, and one C. neoformans isolate (0.9%) misidentified as VGI; the C. gattii species complex isolates comprised one VGII. The overall case fatality rate was 49.5%, with no differences in lethality between VNI and hybrid isolates. Of the four isolates responsible for episodes of reoccurrence, only one had a genotype different from the first episode. Antifungal susceptibility testing revealed that most isolates fell below the local epidemiological cut-off value. This study provides additional information for the analysis of C. neoformans/C. gattii species complexes dynamics in the South American temperate region.
This study describes the epidemiological and molecular trends of human cryptococcosis according to the public health Uruguayan surveillance network. The findings provide additional information for analyzing the Cryptococcusneoformans/C. gattii species complexes in the South American temperate region.
Asunto(s)
Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Masculino , Femenino , Animales , Antifúngicos/farmacología , Uruguay/epidemiología , Criptococosis/epidemiología , Criptococosis/microbiología , Criptococosis/veterinaria , Tipificación Molecular/veterinaria , Genotipo , Técnicas de Tipificación Micológica/veterinariaRESUMEN
The global prevalence and spread of multidrug-resistant organisms (MDROs) represent an emerging public health threat. Day care centre (DCC) attendance is a risk factor for MDRO carriage in children and their environment. This study aimed to map the epidemiology of carriage and potential transmission of these organisms within 18 Flemish DDCs (Belgium). An MDRO prevalence survey was organised between November 2018 and February 2019 among children attending the centres. Selective chromogenic culture media were used for the detection of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E), carbapenemase-producing Enterobacterales (CPE), and vancomycin-resistant Enterococci (VRE) in faecal swabs obtained from diapers or jars (n = 448). All isolated MDROs were subjected to resistance gene sequencing. A total of 71 of 448 samples (15.8%) yielded isolates of ESBL-E with a predominance of Escherichia coli (92.2% of ESBL-E) and ESBL resistance gene blaCTX-M-15 (50.7% of ESBL coding genes in E. coli). ESBL-E prevalence varied between DCCs, ranging from 0 to 50%. Transmission, based on the clonal relatedness of ESBL-E strains, was observed. CPE was identified in only one child carrying an E. coli with an OXA-244 gene. VRE was absent from all samples. The observed prevalence of ESBL-E in Flemish DCCs is high compared with previous studies, and our findings re-emphasise the need for rigorous hygiene measures within such centres to control the further spread of MDROs in the community.