RESUMEN
Store-operated Ca2+ entry through calcium release-activated calcium channels is the chief mechanism for increasing intracellular Ca2+ in immune cells. Here we show that mouse T cells and fibroblasts lacking the calcium sensor STIM1 had severely impaired store-operated Ca2+ influx, whereas deficiency in the calcium sensor STIM2 had a smaller effect. However, T cells lacking either STIM1 or STIM2 had much less cytokine production and nuclear translocation of the transcription factor NFAT. T cell-specific ablation of both STIM1 and STIM2 resulted in a notable lymphoproliferative phenotype and a selective decrease in regulatory T cell numbers. We conclude that both STIM1 and STIM2 promote store-operated Ca2+ entry into T cells and fibroblasts and that STIM proteins are required for the development and function of regulatory T cells.
Asunto(s)
Retículo Endoplásmico/metabolismo , Tolerancia Inmunológica , Activación de Linfocitos/inmunología , Glicoproteínas de Membrana/fisiología , Linfocitos T Reguladores/inmunología , Secuencia de Aminoácidos , Animales , Transporte Biológico Activo/genética , Transporte Biológico Activo/inmunología , Calcio/metabolismo , Canales de Calcio , Línea Celular , Línea Celular Transformada , Células Cultivadas , Retículo Endoplásmico/fisiología , Humanos , Tolerancia Inmunológica/genética , Activación de Linfocitos/genética , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2RESUMEN
Cells can extend the limits of their transcriptome by using proteins captured from other cells. Through an exchange of specific proteins, tools and information can be shared to establish integrated communities of cells that are better able to coordinate stages of an immune response. Transferred proteins can also contribute to pathology by allowing, for example, infection of cell types not otherwise infected. Here, I present the case for considering the intercellular transfer of cell-surface proteins between immune cells as commonplace and important.
Asunto(s)
Comunicación Celular/inmunología , Espacio Extracelular/inmunología , Inmunidad , Proteínas de la Membrana/metabolismo , Animales , Transporte Biológico Activo/genética , Transporte Biológico Activo/inmunología , Comunicación Celular/genética , Espacio Extracelular/genética , Humanos , Inmunidad/genética , Proteínas de la Membrana/genéticaRESUMEN
Toll-like receptor 7 (TLR7) and TLR9 sense microbial single-stranded RNA (ssRNA) and ssDNA in endolysosomes. Nucleic acid (NA)-sensing in endolysosomes is thought to be important for avoiding TLR7/9 responses to self-derived NAs. Aberrant self-derived NA transportation to endolysosomes predisposes to autoimmune diseases. To restrict NA-sensing in endolysosomes, TLR7/9 trafficking is tightly controlled by a multiple transmembrane protein Unc93B1. In contrast to TLR7/9 trafficking, little is known about a mechanism underlying NA transportation. We here show that Mucolipin 1 (Mcoln1), a member of the transient receptor potential (TRP) cation channel gene family, has an important role in ssRNA trafficking into lysosomes. Mcoln1(-/-) dendritic cells (DCs) showed impaired TLR7 responses to ssRNA. A mucolipin agonist specifically enhanced TLR7 responses to ssRNAs. The channel activity of Mcoln1 is activated by a phospholipid phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P2), which is generated by a class III lipid kinase PIKfyve. A PIKfyve inhibitor completely inhibited TLR7 responses to ssRNA in DCs. Confocal analyses showed that ssRNA transportation to lysosomes in DCs was impaired by PIKfyve inhibitor as well as by the lack of Mcoln1. Transportation of TLR9 ligands was also impaired by the PIKfyve inhibitor. These results demonstrate that the PtdIns(3,5)P2-Mcoln1 axis has an important role in ssRNA transportation into lysosomes in DCs.
Asunto(s)
Transporte Biológico Activo/inmunología , Células Dendríticas/inmunología , Lisosomas/inmunología , Glicoproteínas de Membrana/inmunología , ARN/inmunología , Receptor Toll-Like 7/inmunología , Canales de Potencial de Receptor Transitorio/inmunología , Animales , Transporte Biológico Activo/genética , Células Dendríticas/citología , Lisosomas/genética , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Ratones , Ratones Noqueados , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/inmunología , Receptor Toll-Like 7/genética , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Canales de Potencial de Receptor Transitorio/genéticaRESUMEN
Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi.
Asunto(s)
Podocitos/metabolismo , Proteinuria/metabolismo , Animales , Transporte Biológico Activo/genética , Transporte Biológico Activo/inmunología , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/inmunología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Concentración de Iones de Hidrógeno , Ratones , Ratones Noqueados , Podocitos/inmunología , Podocitos/patología , Proteinuria/genética , Proteinuria/inmunología , Proteinuria/patologíaRESUMEN
Prior studies have revealed the key roles played by Th1/Th2 cell dysregulation, IgE production, mast cell hyperactivity, and dendritic cell signaling in the evolution of the chronic, pruritic, inflammatory dermatosis that characterizes atopic dermatitis (AD). We review here increasing evidence that the inflammation in AD results primarily from inherited abnormalities in epidermal structural and enzymatic proteins that impact permeability barrier function. We also will show that the barrier defect can be attributed to a paracellular abnormality due to a variety of abnormalities in lipid composition, transport and extracellular organization. Accordingly, we also review the therapeutic implications of this emerging pathogenic paradigm, including several current and potentially novel, lipid-based approaches to corrective therapy. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inmunología , Epidermis/inmunología , Metabolismo de los Lípidos/inmunología , Lípidos/inmunología , Lípidos/uso terapéutico , Animales , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/inmunología , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Epidermis/metabolismo , Epidermis/patología , Proteínas Filagrina , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Mastocitos/inmunología , Mastocitos/metabolismo , Mastocitos/patología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/patología , Células Th2/inmunología , Células Th2/metabolismo , Células Th2/patologíaRESUMEN
The glucose concentration of the airway surface liquid (ASL) is much lower than that in blood and is tightly regulated by the airway epithelium. ASL glucose is elevated in patients with viral colds, cystic fibrosis, chronic obstructive pulmonary disease, and asthma. Elevated ASL glucose is also associated with increased incidence of respiratory infection. However, the mechanism by which ASL glucose increases under inflammatory conditions is unknown. The aim of this study was to investigate the effect of proinflammatory mediators (PIMs) on the mechanisms governing airway glucose homeostasis in polarized monolayers of human airway (H441) and primary human bronchial epithelial (HBE) cells. Monolayers were treated with TNF-α, IFN-γ, and LPS during 72 h. PIM treatment led to increase in ASL glucose concentration and significantly reduced H441 and HBE transepithelial resistance. This decline in transepithelial resistance was associated with an increase in paracellular permeability of glucose. Similar enhanced rates of paracellular glucose flux were also observed across excised trachea from LPS-treated mice. Interestingly, PIMs enhanced glucose uptake across the apical, but not the basolateral, membrane of H441 and HBE monolayers. This increase was predominantly via phloretin-sensitive glucose transporter (GLUT)-mediated uptake, which coincided with an increase in GLUT-2 and GLUT-10 abundance. In conclusion, exposure of airway epithelial monolayers to PIMs results in increased paracellular glucose flux, as well as apical GLUT-mediated glucose uptake. However, uptake was insufficient to limit glucose accumulation in ASL. To our knowledge, these data provide for the first time a mechanism to support clinical findings that ASL glucose concentration is increased in patients with airway inflammation.
Asunto(s)
Glucosa/metabolismo , Homeostasis/inmunología , Mediadores de Inflamación/farmacología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Animales , Transporte Biológico Activo/inmunología , Línea Celular , Línea Celular Transformada , Línea Celular Tumoral , Glucosa/biosíntesis , Glucosa/deficiencia , Proteínas Facilitadoras del Transporte de la Glucosa/biosíntesis , Transportador de Glucosa de Tipo 2/biosíntesis , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Mucosa Respiratoria/metabolismo , Propiedades de Superficie , Regulación hacia Arriba/inmunologíaRESUMEN
EBV-immortalized B cells induce a complex immune response such that the virus persists as a clinically silent infection for the lifetime of the infected host. B7-H1, also called PD-L1, is a cosignaling molecule of the B7 family that can inhibit activated T cell effectors by interaction with its receptor PD-1. In this work, we have studied the dependence of B7-H1 on NF-κB and c-Myc, the two main transcription factors in EBV latency III proliferating B cells, on various lymphoblastoid and Burkitt lymphoma cell lines, some of them being inducible or not for the EBV latency III program and/or for c-Myc. We found that B7-H1 repressed killing of EBV-immortalized B cells by their autologous T and NK cells. At the mRNA level, NF-κB was a weak inducer whereas c-Myc was a strong repressor of B7-H1 expression, an effect mediated by STAT1 inhibition. At the protein level, B7-H1 molecules were stored in both degradative and unconventional secretory lysosomes. Surface membrane B7-H1 molecules were constitutively internalized and proteolyzed in lysosomes. The EBV latency III program increased the amounts of B7-H1-containing secretory lysosomes and their export to the surface membrane. By repressing actin polymerization, c-Myc blocked secretory lysosome migration and B7-H1 surface membrane export. In addition to B7-H1, various immunoregulatory molecules participating in the immunological synapse are stored in secretory lysosomes. By playing on actin polymerization, c-Myc could thus globally regulate the immunogenicity of transformed B cells, acting on export of secretory lysosomes to plasma membrane.
Asunto(s)
Subgrupos de Linfocitos B/inmunología , Antígeno B7-H1/fisiología , Herpesvirus Humano 4/inmunología , Células Asesinas Naturales/inmunología , Lisosomas/metabolismo , Proteínas Proto-Oncogénicas c-myc/fisiología , ARN Viral/fisiología , Subgrupos de Linfocitos T/inmunología , Latencia del Virus/inmunología , Subgrupos de Linfocitos B/patología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/biosíntesis , Transporte Biológico Activo/inmunología , Muerte Celular/inmunología , Línea Celular , Línea Celular Transformada , Línea Celular Tumoral , Supervivencia Celular/inmunología , Regulación hacia Abajo/inmunología , Humanos , Lisosomas/inmunología , ARN Mensajero/genéticaRESUMEN
Clostridium difficile is a Gram-positive obligate anaerobic pathogen that causes pseudomembranous colitis in antibiotic-treated individuals. Commensal bacteria are known to have a significant role in the intestinal accumulation of C. difficile after antibiotic treatment, but little is known about how they affect host immunity during C. difficile infection. In this article, we report that C. difficile infection results in translocation of commensals across the intestinal epithelial barrier that is critical for neutrophil recruitment through the induction of an IL-1ß-mediated positive-feedback loop. Mice lacking ASC, an essential mediator of IL-1ß and IL-18 processing and secretion, were highly susceptible to C. difficile infection. ASC(-/-) mice exhibited enhanced translocation of commensals to multiple organs after C. difficile infection. Notably, ASC(-/-) mice exhibited impaired CXCL1 production and neutrophil influx into intestinal tissues in response to C. difficile infection. The impairment in neutrophil recruitment resulted in reduced production of IL-1ß and CXCL1 but not IL-18. Importantly, translocated commensals were required for ASC/Nlrp3-dependent IL-1ß secretion by neutrophils. Mice lacking IL-1ß were deficient in inducing CXCL1 secretion, suggesting that IL-1ß is the dominant inducer of ASC-mediated CXCL1 production during C. difficile infection. These results indicate that translocated commensals play a crucial role in CXCL1-dependent recruitment of neutrophils to the intestine through an IL-1ß/NLRP3/ASC-mediated positive-feedback mechanism that is important for host survival and clearance of translocated commensals during C. difficile infection.
Asunto(s)
Clostridioides difficile/inmunología , Enterocolitis Seudomembranosa/inmunología , Enterocolitis Seudomembranosa/prevención & control , Interleucina-1beta/fisiología , Simbiosis/inmunología , Regulación hacia Arriba/inmunología , Animales , Transporte Biológico Activo/genética , Transporte Biológico Activo/inmunología , Comunicación Celular/inmunología , Permeabilidad de la Membrana Celular/genética , Permeabilidad de la Membrana Celular/inmunología , Enterocolitis Seudomembranosa/patología , Mucosa Gástrica/inmunología , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Interleucina-1beta/biosíntesis , Interleucina-1beta/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/microbiología , Neutrófilos/patología , Análisis de Supervivencia , Regulación hacia Arriba/genéticaRESUMEN
Toll-like receptors (TLRs) are key molecular sensors used by the mammalian innate immune system to detect microorganisms. Although TLR functions in colonic immune homeostasis and tolerance to commensal bacteria have been intensively researched, the precise roles of different TLRs in response to pathogen infection in the gut remain elusive. Peyer patches are the major entrance of Salmonella infection and antigen transportation in intestine. Here, we report that, in contrast to TLR5 as a "carrier of Salmonella," TLR11 works as a "blocker of Salmonella" to prevent highly invasive Salmonella from penetrating into the murine Peyer patches and spreading systemically. TLR11 plays an important role in mediating TNF-α induction and systemic inflammation in response to Salmonella infection. Remarkably, in mice lacking TLR11, apparent hemorrhages at Peyer patches are induced by highly invasive Salmonella, a phenotype resembling human Salmonella infection. Therefore, our results indicate a potentially important role for TLR11 in preventing murine intestinal infection and modulating antigen transportation in the gut and imply an important role for various TLRs in cooperation with tight control of pathogens penetrating into Peyer patches. The TLR11 knock-out mouse can serve as a good animal model to study Salmonella infection.
Asunto(s)
Traslocación Bacteriana/inmunología , Mucosa Intestinal/inmunología , Ganglios Linfáticos Agregados/inmunología , Infecciones por Salmonella/inmunología , Salmonella typhimurium/fisiología , Receptores Toll-Like/inmunología , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Traslocación Bacteriana/genética , Transporte Biológico Activo/genética , Transporte Biológico Activo/inmunología , Células CHO , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/genética , Mucosa Intestinal/microbiología , Ratones , Ratones Noqueados , Ganglios Linfáticos Agregados/microbiología , Ganglios Linfáticos Agregados/patología , Infecciones por Salmonella/genética , Infecciones por Salmonella/patología , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , Receptores Toll-Like/genéticaRESUMEN
To evaluate the role of Fc receptors (FcR) on IgG distribution to the brain, the disposition of 8C2, a murine monoclonal IgG1 antibody, was investigated after intravenous administration in FcRn α-chain knockout mice, FcγRIIb knockout mice, FcγRI/RIII knockout mice, and C57BL/6 control mice. (125)I-8C2 was co-administered with (51)Cr-labeled red blood cells to allow accurate assessment of residual blood content in brain samples. Blood and brain tissues were harvested from subgroups of three mice at several time-points up to 10 days, and radioactivity was counted. The blood and brain areas under 8C2 concentration vs time curves (AUCs) were calculated using the linear trapezoidal rule, and the associated standard deviations (SD) were assessed using a modified Bailer method. Concentration data were also analyzed with a semiphysiological population pharmacokinetic model. The brain/blood AUC ratios were comparable across all strains of mice (ratios ± SD): 0.00774 ± 0.000452, 0.00841 ± 0.000535, 0.00636 ± 0.000548, and 0.00917 ± 0.000478 for C57BL/6 control mice, FcγRI/RIII knockouts, FcγRIIb knockouts, and FcRn α-chain knockout mice (p > 0.05). Statistically significant improvement in model fitting of the data was shown with incorporation of a strain-specific parameter for antibody clearance for FcRn knockout mice; however, no significant improvements in model fitting were found for strain effects on any other parameter, including the brain uptake clearance or efflux clearances for 8C2. The predicted 8C2 brain efflux clearance was found to be â¼135-fold faster than the brain uptake clearance, consistent with the observed low ratio of brain-blood exposure. The experimental results and modeling results indicate that, in mice, FcRn and FcγR do not contribute to the "blood-brain barrier" that limits mAb uptake into the brain.
Asunto(s)
Anticuerpos Monoclonales de Origen Murino/farmacocinética , Encéfalo/inmunología , Encéfalo/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Animales , Anticuerpos Monoclonales de Origen Murino/administración & dosificación , Transporte Biológico Activo/inmunología , Barrera Hematoencefálica/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Inmunológicos , Modelos Neurológicos , Receptores Fc/deficiencia , Receptores Fc/genética , Receptores de IgG/deficiencia , Receptores de IgG/genéticaRESUMEN
Antitumor alkylphospholipids initiate apoptosis in transformed HL-60 and Jurkat cells while sparing their progenitors. 1-O-Alkyl-2-carboxymethyl-sn-glycero-3-phosphocholine (Edelfosine) like other short-chained phospholipids--inflammatory platelet-activating factor (PAF) and apoptotic oxidatively truncated phospholipids--are proposed to have intracellular sites of action, yet a conduit for these choline phospholipids into mammalian cells is undefined. Edelfosine is also accumulated by Saccharomyces cerevisiae in a process requiring the membrane protein Lem3p, and the human genome contains a Lem3p homolog TMEM30a. We show that import of choline phospholipids into S. cerevisiae ΔLem3 is partially reconstituted by human TMEM30a and by Lem3p-TMEM30a chimeras, showing the proteins are orthologous. TMEM30a-GFP chimeras expressed in mammalian cells localized in plasma membranes, as well as internal organelles, and ectopic TMEM30a expression promoted uptake of exogenous choline and ethanolamine phospholipids. Short hairpin RNA knockdown of TMEM30a reduced fluorescent choline phospholipid and [(3)H]PAF import. This knockdown also reduced mitochondrial depolarization from exogenous Edelfosine or the mitotoxic oxidatively truncated phospholipid azelaoyl phosphatidylcholine, and the knockdown reduced apoptosis in response to these two phospholipids. These results show that extracellular choline phospholipids with short sn-2 residues can have intracellular roles and sites of metabolism because they are transport substrates for a TMEM30a phospholipid import system. Variation in this mechanism could limit sensitivity to short chain choline phospholipids such as Edelfosine, PAF, and proapoptotic phospholipids.
Asunto(s)
Antineoplásicos/metabolismo , Colina/metabolismo , Proteínas de la Membrana/fisiología , Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico Activo/genética , Transporte Biológico Activo/inmunología , Células CHO , Línea Celular Transformada , Cricetinae , Cricetulus , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/inmunología , Células HL-60 , Células Hep G2 , Humanos , Células Jurkat , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Datos de Secuencia Molecular , Proteínas Mutantes Quiméricas/biosíntesis , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Homología de Secuencia de AminoácidoRESUMEN
Different rates of bacterial translocation across the gut mucosa have been reported but few studies have examined translocation of commensals at the level of the gut epithelial microfold (M) cell. We used an in vitro M-cell model to quantify translocation and determine the transcriptional response of M cells to various commensal bacteria. The transport kinetics and gene expression profile of M cells in response to different bacterial strains, namely Lactobacillus salivarius, Escherichia coli and Bacteroides fragilis, was assessed. Bacterial strains translocated across M cells with different efficiencies; E. coli and B. fragilis translocated with equal efficiency whereas L. salivarius translocated with less efficiency. Microarray analysis of the M cell response showed both common and differential gene expression changes between the bacterial strains. In the presence of bacteria, but not control beads, up-regulated genes were mainly involved in transcription regulation whereas pro-inflammatory and stress response genes were primarily up-regulated by E. coli and B. fragilis, but not L. salivarius nor beads. Translocation of bacteria and M-cell gene expression responses were confirmed in murine M cells following bacterial challenge in vivo. These results demonstrate that M cells have the ability to discriminate between different commensal bacteria and modify subsequent immune responses.
Asunto(s)
Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Animales , Bacteroides fragilis/inmunología , Transporte Biológico Activo/inmunología , Células CACO-2 , Quimiocinas/biosíntesis , Citocinas/biosíntesis , Escherichia coli/inmunología , Femenino , Perfilación de la Expresión Génica , Humanos , Mucosa Intestinal/citología , Lactobacillus/inmunología , Metagenoma/inmunología , Ratones , Ratones Endogámicos BALB C , Modelos Inmunológicos , Monocitos/inmunología , Monocitos/microbiología , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/microbiología , Especificidad de la EspecieRESUMEN
Dendritic cells (DC) present lipid and peptide antigens to T cells on CD1 and MHC Class II (MHCII), respectively. The relative contribution of these systems during the initiation of adaptive immunity after microbial infection is not characterized. MHCII molecules normally acquire antigen and rapidly traffic from phagolysosomes to the plasma membrane as part of DC maturation, whereas CD1 molecules instead continually recycle between these sites before, during, and after DC maturation. We find that in Mycobacterium tuberculosis (Mtb)-infected DCs, CD1 presents antigens quickly. Surprisingly, rapid DC maturation results in early failure and delay in MHCII presentation. Whereas both CD1b and MHCII localize to bacterial phagosomes early after phagocytosis, MHCII traffics from the phagosome to the plasma membrane with a rapid kinetic that can precede antigen availability and loading. Thus, rather than facilitating antigen presentation, a lack of coordination in timing may allow organisms to use DC maturation as a mechanism of immune evasion. In contrast, CD1 antigen presentation occurs in the face of Mtb infection and rapid DC maturation because a pool of CD1 molecules remains available on the phagolysosome membrane that is able to acquire lipid antigens and deliver them to the plasma membrane.
Asunto(s)
Presentación de Antígeno/inmunología , Antígenos CD1/inmunología , Células Dendríticas/inmunología , Lípidos/inmunología , Mycobacterium tuberculosis/inmunología , Péptidos/inmunología , Tuberculosis/inmunología , Transporte Biológico Activo/inmunología , Membrana Celular/inmunología , Células Cultivadas , Células Dendríticas/microbiología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Cinética , Fagocitosis/inmunología , Fagosomas/inmunología , Linfocitos T/inmunologíaRESUMEN
The aorta and the large conductive arteries are immunoprivileged tissues and are protected against inflammatory attack. A breakdown of immunoprivilege leads to autoimmune vasculitis, such as giant cell arteritis, in which CD8+ Treg cells fail to contain CD4+ T cells and macrophages, resulting in the formation of tissue-destructive granulomatous lesions. Here, we report that the molecular defect of malfunctioning CD8+ Treg cells lies in aberrant NOTCH4 signaling that deviates endosomal trafficking and minimizes exosome production. By transcriptionally controlling the profile of RAB GTPases, NOTCH4 signaling restricted vesicular secretion of the enzyme NADPH oxidase 2 (NOX2). Specifically, NOTCH4hiCD8+ Treg cells increased RAB5A and RAB11A expression and suppressed RAB7A, culminating in the accumulation of early and recycling endosomes and sequestering of NOX2 in an intracellular compartment. RAB7AloCD8+ Treg cells failed in the surface translocation and exosomal release of NOX2. NOTCH4hiRAB5AhiRAB7AloRAB11AhiCD8+ Treg cells left adaptive immunity unopposed, enabling a breakdown in tissue tolerance and aggressive vessel wall inflammation. Inhibiting NOTCH4 signaling corrected the defect and protected arteries from inflammatory insult. This study implicates NOTCH4-dependent transcriptional control of RAB proteins and intracellular vesicle trafficking in autoimmune disease and in vascular inflammation.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Endosomas/inmunología , Receptor Notch4/inmunología , Linfocitos T Reguladores/inmunología , Vasculitis/inmunología , Anciano , Transporte Biológico Activo/inmunología , Linfocitos T CD8-positivos/patología , Endosomas/patología , Femenino , Humanos , Masculino , NADPH Oxidasa 2/inmunología , Linfocitos T Reguladores/patología , Vasculitis/patología , Proteínas de Unión al GTP rab/inmunología , Proteínas de Unión al GTP rab5/inmunología , Proteínas de Unión a GTP rab7RESUMEN
Proline-glycine-proline (PGP) and its acetylated form (Ac-PGP) are neutrophil chemoattractants generated by collagen degradation, and they have been shown to play a role in chronic inflammatory disease. However, the mechanism for matrikine regulation in acute inflammation has not been well established. Here, we show that these peptides are actively transported from the lung by the oligopeptide transporter, PEPT2. Following intratracheal instillation of Ac-PGP in a mouse model, there was a rapid decline in concentration of the labeled peptide in the bronchoalveolar lavage (BAL) over time and redistribution to extrapulmonary sites. In vitro knockdown of the PEPT2 transporter in airway epithelia or use of a competitive inhibitor of PEPT2, cefadroxil, significantly reduced uptake of Ac-PGP. Animals that received intratracheal Ac-PGP plus cefadroxil had higher levels of Ac-PGP in BAL and lung tissue. Utilizing an acute LPS-induced lung injury model, we demonstrate that PEPT2 blockade enhanced pulmonary Ac-PGP levels and lung inflammation. We further validated this effect using clinical samples from patients with acute lung injury in coculture with airway epithelia. This is the first study to our knowledge to determine the in vitro and in vivo significance of active matrikine transport as a mechanism of modulating acute inflammation and to demonstrate that it may serve as a potential therapeutic target.
Asunto(s)
Lesión Pulmonar Aguda/inmunología , COVID-19 , Cefadroxilo/farmacología , Inflamación/metabolismo , Oligopéptidos , Prolina/análogos & derivados , Simportadores , Animales , Antibacterianos/farmacología , Transporte Biológico Activo/inmunología , COVID-19/inmunología , COVID-19/metabolismo , Células Cultivadas , Factores Quimiotácticos/inmunología , Factores Quimiotácticos/farmacología , Quimiotaxis de Leucocito/inmunología , Modelos Animales de Enfermedad , Matriz Extracelular , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Ratones , Oligopéptidos/inmunología , Oligopéptidos/farmacología , Prolina/inmunología , Prolina/farmacología , Simportadores/antagonistas & inhibidores , Simportadores/metabolismoRESUMEN
Antigen capture and presentation onto MHC class II molecules by B lymphocytes is mediated by their surface antigen receptor - the B-cell receptor (BCR). The BCR must therefore coordinate the transport of MHC class II- and antigen-containing vesicles for them to converge and ensure efficient processing. Recently, progress has been made in understanding which and how these vesicular transport events are molecularly linked to BCR signaling. In particular, recent studies have emphasized the key roles of membrane microdomains and the actin cytoskeleton in regulation of membrane trafficking upon BCR engagement.
Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos B/inmunología , Membrana Celular/inmunología , Receptores de Antígenos de Linfocitos B/fisiología , Transducción de Señal/inmunología , Linfocitos B/metabolismo , Transporte Biológico Activo/inmunología , Membrana Celular/metabolismoAsunto(s)
Alérgenos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Leche Humana/metabolismo , Transporte Biológico Activo/inmunología , Femenino , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Leche Humana/inmunología , Análisis por Matrices de Proteínas/métodos , Adulto JovenRESUMEN
Metabolic reprogramming is reported to be one of the hallmarks of cancer, which is an adaptive mechanism by which fast-growing cancer cells adapt to their increasing energy demands. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Meanwhile, the TME is a highly heterogeneous ecosystem incorporating cancer cells, fibroblasts, adipocytes, endothelial cells, mesenchymal stem cells, and extracellular matrix. Accumulated evidence indicates that exosomes may transfer biologically functional molecules to the recipient cells, which facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells and their surrounding stromal cells. In this review, we present the role of exosomes in the TME and the underlying mechanism of how exosomes exacerbate tumor development through metabolic reprogramming. In addition, we will also discuss the potential role of exosomes targeting metabolic process as biomarkers for tumor diagnosis and prognosis, and exosomes-mediated metabolic reprogramming as potential targets for cancer therapy. Furthermore, a better understanding of the link between exosomes and metabolic reprogramming, and their impact on cancer progression, would provide novel insights for cancer prevention and treatment in the future.
Asunto(s)
Reprogramación Celular/inmunología , Resistencia a Antineoplásicos/inmunología , Exosomas , Terapia de Inmunosupresión , Neoplasias , Neovascularización Patológica , Microambiente Tumoral/inmunología , Animales , Transporte Biológico Activo/inmunología , Exosomas/inmunología , Exosomas/metabolismo , Humanos , Metástasis de la Neoplasia , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Neovascularización Patológica/inmunología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/terapiaRESUMEN
Antigen presenting cells from the cervical mucosa are thought to amplify incoming HIV-1 and spread infection systemically without being productively infected. Yet, the molecular mechanism at the cervical mucosa underlying this viral transmission pathway remains unknown. Here we identified a subset of HLA-DR+ CD14+ CD11c+ cervical DCs at the lamina propria of the ectocervix and the endocervix that expressed the type-I interferon inducible lectin Siglec-1 (CD169), which promoted viral uptake. In the cervical biopsy of a viremic HIV-1+ patient, Siglec-1+ cells harbored HIV-1-containing compartments, demonstrating that in vivo, these cells trap viruses. Ex vivo, a type-I interferon antiviral environment enhanced viral capture and trans-infection via Siglec-1. Nonetheless, HIV-1 transfer via cervical DCs was effectively prevented with antibodies against Siglec-1. Our findings contribute to decipher how cervical DCs may boost HIV-1 replication and promote systemic viral spread from the cervical mucosa, and highlight the importance of including inhibitors against Siglec-1 in microbicidal strategies.
Asunto(s)
Cuello del Útero/inmunología , Células Dendríticas/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/inmunología , Replicación Viral/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Transporte Biológico Activo/inmunología , Cuello del Útero/patología , Cuello del Útero/virología , Células Dendríticas/patología , Células Dendríticas/virología , Femenino , Células HEK293 , Infecciones por VIH/patología , Humanos , Interferón Tipo I/inmunología , Persona de Mediana Edad , Membrana Mucosa/inmunología , Membrana Mucosa/patología , Membrana Mucosa/virologíaRESUMEN
Mucosal surfaces are exposed continuously to a flood of foreign antigens demanding a tightly controlled balance between immunity and tolerance induction. Tolerance toward food and inhaled antigens, known as oral and respiratory tolerance, respectively, evokes a body-wide nonresponsiveness against the plethora of environmental antigens. Key issues in understanding the induction of mucosal tolerance relate to the site of antigen entrance, the mechanisms of antigen transport, and the exact anatomical location where lymphocytes meet their cognate antigens. In this regard, opposing ideas have been put forward: In one scenario, antigens taken up at mucosal surfaces are considered to spread throughout the body, thus potentially evoking tolerogenic immune responses in all secondary lymphoid organs. Alternatively, tolerance induction might be confined to the draining regional lymph nodes (LN). Recent observations strongly supported the latter scenario, emphasizing the importance of regional LN and their network of afferent lymphatics in this process. In this model, air-borne and intestinal antigens are captured at mucosal sites by dendritic cells, which then migrate exclusively in a CCR7-dependent way to draining regional LN. Tolerance is then induced actively by the activation of antigen-specific T cells, which are subsequently deleted, become anergic, or alternatively, differentiate into regulatory T cells. Thus, the concept of local induction of immune responses seems to hold true for the majority of immune reactions, regardless of whether they are tolerogenic or defensive in their outcome.