Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Fish Dis ; 44(4): 461-467, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33118189

RESUMEN

Non-destructive sampling methods offer practical advantages to detection and monitoring of viral pathogens in economically important farmed fish and broodstock. Here, we investigated whether blood, mucus and fin can be used as non-lethal sample sources for detection of scale drop disease virus (SDDV) in farmed Asian sea bass, Lates calcarifer. Detection of SDDV was performed in parallel from three non-destructive and seven destructive sample types, collected from both clinically sick fish and subclinical fish obtained from an affected farm. The results showed that SDDV was detectable in all 10 sample types with the percentage ranging from 20% to 100%. Blood was the best non-destructive sample source exhibited by the fact that it yielded 100% SDDV-positive tests from both sick (n = 12, 95% CI: 69.9-99.2) and clinically healthy fish (n = 4, 95% CI: 39.6%-97.4%) and is considered a "sterile" sample. This study also revealed concurrent infection of SDDV and two ectoparasites Lernanthropus sp. and Diplectanum sp., in all affected fish (n = 8, 95% CI: 46.7-99.3) during the disease outbreak. These ectoparasites also tested positive for SDDV by PCR, indicating that they were potential sample sources for PCR-based detection of SDDV and possibly other viruses infecting Asian sea bass.


Asunto(s)
Lubina , Copépodos/virología , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/epidemiología , Iridoviridae/aislamiento & purificación , Trematodos/virología , Escamas de Animales/virología , Animales , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/virología , Enfermedades de los Peces/virología , Prevalencia , Tailandia/epidemiología
2.
J Anim Ecol ; 86(4): 921-931, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28317105

RESUMEN

Coinfections are increasingly recognized as important drivers of disease dynamics. Consequently, greater emphasis has been placed on integrating principles from community ecology with disease ecology to understand within-host interactions among parasites. Using larval amphibians and two amphibian parasites (ranaviruses and the trematode Echinoparyphium sp.), we examined the influence of coinfection on disease outcomes. Our first objective was to examine how priority effects (the timing and sequence of parasite exposure) influence infection and disease outcomes in the laboratory. We found that interactions between the parasites were asymmetric; prior infection with Echinoparyphium reduced ranaviral loads by 9% but there was no reciprocal effect of prior ranavirus infection on Echinoparyphium load. Additionally, survival rates of hosts (larval gray treefrogs; Hyla versicolor) infected with Echinoparyphium 10 days prior to virus exposure were 25% greater compared to hosts only exposed to virus. Our second objective was to determine whether these patterns were generalizable to multiple amphibian species under more natural conditions. We conducted a semi-natural mesocosm experiment consisting of four larval amphibian hosts [gray treefrogs, American toads (Anaxyrus americanus), leopard frogs (Lithobates pipiens) and spring peepers (Pseudacris crucifer)] to examine how prior Echinoparyphium infection influenced ranavirus transmission within the community, using ranavirus-infected larval wood frogs (Lithobates sylvaticus) as source of ranavirus. Consistent with the laboratory experiment, we found that prior Echinoparyphium infection reduced ranaviral loads by 19 to 28% in three of the four species. Collectively, these results suggest that macroparasite infection can reduce microparasite replication rates across multiple amphibian species, possibly through cross-reactive immunity. Although the immunological mechanisms driving this outcome are in need of further study, trematode infections appear to benefit hosts that are exposed to ranaviruses. Additionally, these results suggest that consideration of priority effects and timing of exposure are vital for understanding parasite interactions within hosts and disease outcomes.


Asunto(s)
Anuros , Coinfección , Ranavirus/patogenicidad , Trematodos/virología , Animales , Anuros/microbiología , Anuros/virología , Bufonidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA