Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Dispos ; 52(4): 305-311, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38262704

RESUMEN

Tree shrews are a nonprimate species used in a range of biomedical studies. Recent genome analysis of tree shrews found that the sequence identities and the numbers of genes of cytochrome P450 (CYP or P450), an important family of drug-metabolizing enzymes, are similar to those of humans. However, tree shrew P450s have not yet been sufficiently identified and analyzed. In this study, novel CYP2D8a and CYP2D8b cDNAs were isolated from tree shrew liver and were characterized, along with human CYP2D6, dog CYP2D15, and pig CYP2D25. The amino acid sequences of these tree shrew CYP2Ds were 75%-78% identical to human CYP2D6, and phylogenetic analysis showed that they were more closely related to human CYP2D6 than rat CYP2Ds, similar to dog and pig CYP2Ds. For tree shrew CYP2D8b, two additional transcripts were isolated that contained different patterns of deletion. The gene and genome structures of CYP2Ds are generally similar in dogs, humans, pigs, and tree shrews. Tree shrew CYP2D8a mRNA was most abundantly expressed in liver, among the tissue types analyzed, similar to dog CYP2D15 and pig CYP2D25 mRNAs. Tree shrew CYP2D8b mRNA was also expressed in liver, but at a level 7.3-fold lower than CYP2D8a mRNA. Liver microsomes and recombinant protein of both tree shrew CYP2Ds metabolized bufuralol and dextromethorphan, selective substrates of human CYP2D6, but the activity level of CYP2D8a greatly exceeded that of CYP2D8b. These results suggest that tree shrew CYP2D8a and CYP2D8b are functional drug-metabolizing enzymes, of which CYP2D8a is the major CYP2D in liver. SIGNIFICANCE STATEMENT: Novel tree shrew CYP2D8a and CYP2D8b cDNAs were isolated from liver. Their amino acid sequences were 75%-78% identical to human CYP2D6. For CYP2D8b, two additional transcripts contained different patterns of deletion. Tree shrew CYP2D8a mRNA was abundantly expressed in liver, similar to dog CYP2D15 and pig CYP2D25 mRNAs. Recombinant tree shrew CYP2Ds catalyzed the oxidation of bufuralol and dextromethorphan. Tree shrew CYP2D8a and CYP2D8b are functional drug-metabolizing enzymes, of which CYP2D8a is the major CYP2D in liver.


Asunto(s)
Citocromo P-450 CYP2D6 , Dextrometorfano , Etanolaminas , Humanos , Ratas , Porcinos , Animales , Perros , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Dextrometorfano/metabolismo , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Filogenia , Musarañas/genética , Musarañas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Parasitology ; 151(4): 440-448, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525532

RESUMEN

A new species of Moniliformis, M. tupaia n. sp. is described using integrated morphological methods (light and scanning electron microscopy) and molecular techniques (sequencing and analysing the nuclear 18S, ITS, 28S regions and mitochondrial cox1 and cox2 genes), based on specimens collected from the intestine of the northern tree shrew Tupaia belangeri chinensis Anderson (Scandentia: Tupaiidae) in China. Phylogenetic analyses show that M. tupaia n. sp. is a sister to M. moniliformis in the genus Moniliformis, and also challenge the systematic status of Nephridiacanthus major. Moniliformis tupaia n. sp. represents the third Moniliformis species reported from China.


Asunto(s)
Acantocéfalos , Filogenia , Tupaia , Animales , Tupaia/parasitología , Tupaia/genética , China , Acantocéfalos/genética , Acantocéfalos/clasificación , Acantocéfalos/anatomía & histología , Acantocéfalos/ultraestructura , Helmintiasis Animal/parasitología , Microscopía Electrónica de Rastreo/veterinaria , ADN de Helmintos/genética , ARN Ribosómico 18S/genética , Femenino , Masculino , ARN Ribosómico 28S/genética , Intestinos/parasitología
3.
Drug Metab Dispos ; 51(5): 610-617, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36669854

RESUMEN

The tree shrew, a non-rodent primate-like species, is used in various fields of biomedical research, including hepatitis virus infection, myopia, depression, and toxicology. Recent genome analysis found that the numbers of cytochrome P450 (P450 or CYP) genes are similar in tree shrews and humans and their sequence identities are high. Although the P450s are a family of important drug-metabolizing enzymes, they have not yet been fully investigated in tree shrews. In the current study, tree shrew CYP2A13 cDNA was isolated from liver, and its characteristics were compared with those of pig, dog, and human CYP2As. Tree shrew CYP2A13 amino acid sequences were highly identical (87-92%) to the human CYP2As and contained sequence motifs characteristic of P450s. Phylogenetic analysis revealed that tree shrew CYP2A13 was more closely related to human CYP2As than to rat CYP2As, similar to dog and pig CYP2As. Among the tissue types analyzed, tree shrew CYP2A13 mRNA was preferentially expressed in liver and lung, similar to dog CYP2A13 mRNA, whereas dog CYP2A25 and pig CYP2A19 mRNAs were predominantly expressed in liver. Tree shrew liver microsomes and tree shrew CYP2A13 proteins heterologously expressed in Escherichia coli catalyzed coumarin 7-hydroxylation and phenacetin O-deethylation, just as human, dog, and pig CYP2A proteins and liver microsomes do. These results demonstrate that tree shrew CYP2A13 is expressed in liver and lung and encodes a functional drug-metabolizing enzyme. SIGNIFICANCE STATEMENT: Novel tree shrew cytochrome P450 2A13 (CYP2A13) was identified and characterized in comparison with human, dog, and pig CYP2As. Tree shrew CYP2A13 isolated from liver had high sequence identities and close phylogenetic relationships to its human homologs and was abundantly expressed in liver and lung at the mRNA level. Tree shrew CYP2A13 metabolized coumarin and phenacetin, human selective CYP2A6 and CYP2A13 substrates, respectively, similar to dog and pig CYP2As, and is a functional drug-metabolizing enzyme likely responsible for drug clearances.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Tupaia , Animales , Perros , Humanos , Ratas , Citocromo P-450 CYP2A6/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Fenacetina , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos , Tupaia/genética , Tupaia/metabolismo
4.
J Immunol ; 204(12): 3191-3204, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32376647

RESUMEN

The stimulator of IFN genes (STING; also known as MITA, TMEM173, MPYS, or ERIS) is generally regarded as a key adaptor protein for sensing pathogenic DNA genomes. However, its role in RNA viral signaling as part of the innate immunity system remains controversial. In this study, we identified two isoforms of STING (a full-length Tupaia STING [tSTING-FL] and a Tupaia STING short isoform [tSTING-mini]) in the Chinese tree shrew (Tupaia belangeri chinensis), a close relative of primates. tSTING-FL played a key role in the HSV-1-triggered type I IFN signaling pathway, whereas tSTING-mini was critical for RNA virus-induced antiviral signaling transduction. tSTING-mini, but not tSTING-FL, interacted with tMDA5-tLGP2 and tIRF3 in resting cells. Upon RNA virus infection, tSTING-mini caused a rapid enhancement of the tMDA5-tLGP2-mediated antiviral response and acted earlier than tSTING-FL. Furthermore, tSTING-mini was translocated from the cytoplasm to the nucleus during RNA virus infection and promoted tIRF3 phosphorylation through tSTING-mini-tIRF3 interaction, leading to a restriction of viral replication. After the initiation of antiviral effect, tSTING-mini underwent rapid degradation by tDTX3L-tPAPR9 via k48-linked ubiquitination through a proteasome-dependent pathway. Our results have shown alternative isoforms of STING counteract RNA virus infection in different ways.


Asunto(s)
Empalme Alternativo/genética , Factor 3 Regulador del Interferón/genética , Helicasa Inducida por Interferón IFIH1/genética , Proteínas de la Membrana/genética , ARN Helicasas/genética , Virus ARN/genética , Tupaia/genética , Animales , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Inmunidad Innata/genética , ARN Viral/genética , Transducción de Señal/genética , Células Vero , Replicación Viral/genética
5.
Mol Biol Rep ; 49(8): 7307-7314, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35767108

RESUMEN

BACKGROUND: The product of the SEC14L2 (SEC14 Like Lipid Binding 2) gene belongs to a family of lipid-binding proteins including Sec14p, alpha-tocopherol transfer protein, and cellular retinol-binding protein. SEC14L2 expression enables replication of clinical hepatitis C virus (HCV) isolates in several hepatoma cell lines, and mutations in SEC14L2 may enhance HCV replication in vitro. The Chinese tree shrew (Tupaia belangeri chinensis) is a potential animal model for studying HCV replication, however, the cDNA sequence, protein structure, and expression of the Chinese tree shrew SEC14L2 gene have yet to be characterized. METHODS AND RESULTS: In the present study, we cloned the full-length cDNA sequence of the SEC14L2 in the Chinese tree shrew by using rapid amplification of cDNA ends technology. This led us to determine that, this is 2539 base pairs (bp) in length, the open reading frame sequence is 1212 bp, and encodes 403 amino acids. Following this, we constructed a phylogenetic tree based on SEC14L2 molecules from various species and compared SEC14L2 amino acid sequence with other species. This analysis indicated that the Chinese tree shrew SEC14L2 protein (tsSEC14L2) has 96.28% amino acid similarity to the human protein, and is more closely related to the human protein than either mouse or rat protein. The Chinese tree shrew SEC14L2 mRNA was detected in all tissues, and showed highest expression levels in the pancreas, small intestine and trachea, however the tsSEC14L2 protein abundance was highest in the liver and small intestine. CONCLUSION: The Chinese tree shrew SEC14L2 gene was closer in evolutionary relation to humans and non-human primates and expression of the tsSEC14L2 protein was highest in the liver and small intestine. These results may provide useful information for tsSEC14L2 function in HCV infection.


Asunto(s)
Hepatitis C , Lipoproteínas/metabolismo , Tupaia , Animales , Proteínas Portadoras/genética , China , ADN Complementario , Modelos Animales de Enfermedad , Hepacivirus/genética , Humanos , Lípidos , Lipoproteínas/genética , Ratones , Filogenia , Ratas , Transactivadores/genética , Tupaia/genética
6.
Cytokine ; 138: 155388, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33271385

RESUMEN

Chinese tree shrews (Tupaia belangeri chinensis) are increasingly used as an alternative experimental animal to non-human primates in studying viral infections. Guanylate-binding proteins (GBP) belong to interferon (IFN)-inducible GTPases and defend the mammalian cell interior against diverse invasive pathogens. Previously, we identified five tree shrew GBP genes (tGBP1, tGBP2, tGBP4, tGBP5, and tGBP7) and found that tGBP1 showed antiviral activity against vesicular stomatitis virus (VSV) and type 1 herpes simplex virus (HSV-1) infections. Here, we showed that the anti-VSV activity of tGBP1 was independent of its GTPase activity and isoprenylation. In response to VSV infection, instead of regulating IFN expression and autophagy, tGBP1 competed with the VSV nucleocapsid (N) protein in binding to the VSV phosphoprotein (VSV-P), leading to the repression of the primary transcription of the VSV genome. These observations constitute the first report of the potential mechanism underlying the inhibition of VSV by GBP1.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Genoma Viral , Fosfoproteínas/genética , Tupaia/genética , Vesiculovirus/metabolismo , Animales , Autofagia , Células HEK293 , Humanos , Interferones/metabolismo , Proteínas de la Nucleocápside/química , Unión Proteica , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba , Proteínas Virales/química , Replicación Viral/efectos de los fármacos
7.
Mol Biol Rep ; 48(12): 7975-7984, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34716864

RESUMEN

BACKGROUND: The Niemann-Pick C1-Like 1 protein, a multi-transmembrane domain molecule, is critical for intestinal cholesterol absorption, and is the entry factor for hepatitis C virus (HCV). The Chinese tree shrew (Tupaia belangeri chinensis) is closer to primates in terms of genetic evolution than rodents. Previous studies indicated that the tree shrew was suitable for HCV research; however, little is known about tree shrew NPC1L1. METHODS AND RESULTS: TsNPC1L1 cDNA was amplified by rapid amplification of cDNA ends (RACE) technology. The cDNA sequence, its encoded protein structure, and expression profile were analyzed. Results indicated that the tsNPC1L1 mRNA is 4948 bp in length and encodes a 1326 amino acid protein. TsNPC1L1 possesses 84.97% identity in homology to human NPC1L1 which is higher than both mouse (80.37%) and rat (81.80%). The protein structure was also similar to human with 13 conserved transmembrane helices, and a sterol-sensing domain (SSD). Like human NPC1L1, the tsNPC1L1 mRNA transcript is highly expressed in small intestine, but it was also well-expressed in the lung and pancreas of the tree shrew. CONCLUSION: The homology of tree shrew NPC1L1 was closer to human than that of rodent NPC1L1. The expression of tsNPC1L1 was the highest in small intestine, and was detectable in lung and pancreas. These results may be useful in the study of tsNPC1L1 function in cholesterol absorption and HCV infection.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Tupaia/genética , Secuencia de Aminoácidos , Animales , China , Clonación Molecular , Proteínas de Transporte de Membrana/metabolismo , Filogenia , ARN Mensajero/genética , Tupaia/metabolismo
8.
Metab Brain Dis ; 36(7): 1889-1901, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34417941

RESUMEN

Nowadays, similar strategies have been used for the treatment and prevention of acute stroke in both diabetes mellitus (DM) and non-DM populations. These strategies were analyzed to provide an experimental basis for the clinical prevention and treatment of stroke in patients both with and without DM. Tree shrews were randomly divided into control, DM, ischemic stroke (IS), and DMIS groups with 18 animals in each group. Serum biochemical indicators were used to assess metabolic status. Neural tissue damage was determined using triphenyl tetrazolium chloride staining, H-E staining, and electron microscopy. Differential gene expression of neural tissue between the DM and control groups and the IS and DMIS groups was measured using RNA-seq analysis. The serum glucose levels of the DM and DMIS groups were significantly higher than other groups. In the DMIS group, the infarct size was significantly larger than in the IS group (19.56 ± 1.25%), with a more obvious abnormal ultrastructure of neural cells. RNA-seq analysis showed that the expression of IL-8, C-C motif chemokine 2 (CCL2), and alpha-1-antichymotrypsin was significantly higher in the DM group than in the control group. The CCL7, ATP-binding cassette sub-family A member 12, and adhesion G protein-coupled receptor E2 levels were significantly higher in the DMIS group than in the IS group. For the prevention and treatment of stroke in patients with DM, reducing the inflammatory state of the nervous system may reduce the incidence of stroke and improve the prognosis of neurological function after IS.


Asunto(s)
Isquemia Encefálica , Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Encéfalo/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Diabetes Mellitus Tipo 2/genética , Isquemia , Accidente Cerebrovascular Isquémico/genética , Análisis de Secuencia de ARN , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/terapia , Tupaia/genética , Tupaiidae/genética
9.
BMC Genet ; 21(1): 43, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32303177

RESUMEN

BACKGROUND: Constraints in migratory capabilities, such as the disruption of gene flow and genetic connectivity caused by habitat fragmentation, are known to affect genetic diversity and the long-term persistence of populations. Although negative population trends due to ongoing forest loss are widespread, the consequence of habitat fragmentation on genetic diversity, gene flow and genetic structure has rarely been investigated in Bornean small mammals. To fill this gap in knowledge, we used nuclear and mitochondrial DNA markers to assess genetic diversity, gene flow and the genetic structure in the Bornean tree shrew, Tupaia longipes, that inhabits forest fragments of the Lower Kinabatangan Wildlife Sanctuary, Sabah. Furthermore, we used these markers to assess dispersal regimes in male and female T. longipes. RESULTS: In addition to the Kinabatangan River, a known barrier for dispersal in tree shrews, the heterogeneous landscape along the riverbanks affected the genetic structure in this species. Specifically, while in larger connected forest fragments along the northern riverbank genetic connectivity was relatively undisturbed, patterns of genetic differentiation and the distribution of mitochondrial haplotypes in a local scale indicated reduced migration on the strongly fragmented southern riverside. Especially, oil palm plantations seem to negatively affect dispersal in T. longipes. Clear sex-biased dispersal was not detected based on relatedness, assignment tests, and haplotype diversity. CONCLUSION: This study revealed the importance of landscape connectivity to maintain migration and gene flow between fragmented populations, and to ensure the long-term persistence of species in anthropogenically disturbed landscapes.


Asunto(s)
Estructuras Genéticas , Variación Genética , Tupaia/genética , Animales , Ecosistema , Femenino , Flujo Génico/genética , Marcadores Genéticos/genética , Haplotipos/genética , Malasia , Masculino , Mamíferos , Ríos
10.
Appl Microbiol Biotechnol ; 104(20): 8813-8823, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32880691

RESUMEN

BACKGROUND: The Chinese tree shrew (Tupaia belangeri chinesis) is a rising experimental animal and has been used for studying a variety of human diseases, such as metabolic and viral infectious diseases. METHODS: In this study, we established an immortalized tree shrew hepatic cell line, ITH6.1, by introducing the simian virus 40 large T antigen gene into primary tree shrew hepatocytes (PTHs). RESULTS: The ITH6.1 cell line had a stable cell morphology and proliferation activity. This cell line could be infected by enterovirus 71 (EV71), but not hepatitis C virus (HCV), although the known HCV entry factors, including CD81, SR-BI, CLDN1 and OCLN, were all expressed in the PTHs and ITH6.1 of different passages. Comparison of the transcriptomic features of the PTHs and different passages of the ITH6.1 cells revealed the dynamic gene expression profiles during the transformation. We found that the DNA replication- and cell cycle-related genes were upregulated, whereas the metabolic pathway-related genes were downregulated in early passages of immortalized hepatocytes compared to the PTHs. Furthermore, expression of hepatocytes function-related genes were repressed in ITH6.1 compared to that of PTHs. CONCLUSION: We believe these cellular expression alterations might cause the resistance of the ITH6.1 cell to HCV infection. This tree shrew liver cell line may be a good resource for the field. KEY POINTS: • A tree shrew hepatic cell line (ITH6.1) was established. • ITH6.1 cells could be infected by EV71, but not HCV. • ITH6.1 had an altered expression profiling compared to the primary hepatocytes.


Asunto(s)
Transcriptoma , Tupaia , Animales , Línea Celular , China , Hepatocitos , Humanos , Hígado , Tupaia/genética
11.
Biotechnol Lett ; 42(12): 2561-2567, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32812126

RESUMEN

OBJECTIVES: To investigate adaptive strategies of Tupaia belangeri to environmental factors in different populations, 12 locations were selected, including higher and lower altitude areas. RESULTS: Total of 96 and 90 metabolites were annotated in serum and liver respectively, which were mainly concentrated in primary metabolites. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) showed that the locations were divided into two groups in serum metabolites, but each group had a few samples overlap. The samples of each group overlap to some degree in the liver metabolites. The tricarboxylic acid (TCA) cycle occupies a central position in metabolism. The concentrations of TCA intermediates, lipid metabolites and amino acid metabolites were higher in higher altitude areas, and the concentrations of carbohydrate and glycolysis intermediates were higher in lower altitude areas. CONCLUSIONS: Different areas adapted to the changes of environmental and altitude by regulating the concentration of metabolites in serum and liver, and revealed the adaptive mechanism of T. belangeri in different living environments.


Asunto(s)
Biomarcadores/sangre , Metaboloma/genética , Metabolómica , Tupaia/sangre , Aminoácidos/sangre , Aminoácidos/genética , Animales , China , Cromatografía de Gases y Espectrometría de Masas , Lípidos/sangre , Hígado/metabolismo , Tupaia/genética
12.
J Integr Neurosci ; 19(2): 249-257, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32706189

RESUMEN

The gene PSEN2 encodes presenilin-2, a subunit of γ-secretase. Mutations in PSEN2 are not only related to Alzheimer's disease but are also involved in other diseases. The Chinese tree shrew (Tupaia belangeri chinensis) is a potential animal model for Alzheimer's disease, although little is known about its cDNA sequence, protein structure, and PSEN2 expression. To better understand PSEN2 in the tree shrew, we cloned this gene by rapid amplification of cDNA ends technology. Hence, we analyzed the sequence and molecular characteristics of PSEN2 mRNA, predicted its spatial structure, and analyzed its expression profiles. We found that tree shrew PSEN2 is 1539 base pairs in length and encodes 330 amino acids. It is homologous and genetically similar to humans (97.64% identity). The protein structure of tree shrew PSEN2 indicated similarities to human PSEN2, both being comprised of numerous transmembrane helices. However, tree shrew PSEN2 possesses seven α-helices, and thus lacks three compared with human PSEN2. Tree shrew PSEN2 mRNAs were ubiquitously detected in all tissues, with a tissue- and temporal-specific pattern. These results pave the way towards the function of tree shrew PSEN2, which will give insights into the mechanisms leading to neurodegenerative and other diseases in humans.


Asunto(s)
Presenilina-2/genética , Transcriptoma/genética , Tupaia/genética , Animales , ADN Complementario , Modelos Animales de Enfermedad , ARN Mensajero
13.
Cytokine ; 114: 106-114, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30467096

RESUMEN

Virus infection induces type I interferons (IFNs) that in turn exert their pleiotropic effects through inducing a large number of interferon-stimulated genes (ISGs). The IFN-induced 2',5'-oligoadenylate synthetases (OASs) have been identified as a member of the ISGs family characterized by the ability to synthesize 2',5'-oligoadenylate (2-5A), which can induce the degradation of viral RNA by activating RNase L within the infected cells to block viral replications. In this study, we characterized the OASs of the Chinese tree shrew (Tupaia belangeri chinensis), a small mammal genetically close to primates and has the potential as animal model for viral infections. We identified 4 putative tree shrew OASs (tOASs, including tOAS1, tOAS2, tOASL1, and tOASL2) and characterized their roles in antiviral responses. Tree shrew lost tOAS3 that was presented in human and mouse. Phylogenetic analyses based on the protein sequences showed a close relationship of tOASs with those of mammals. Constitutive mRNA expression of tOASs was found in seven tissues (heart, liver, spleen, lung, kidney, small intestine and brain). Moreover, tOASs were significantly up-regulated upon various virus infections. Overexpression of tOASs significantly inhibited DNA virus and RNA virus replications in tree shrew primary renal cells. tOAS1 and tOAS2, but not tOASL1 and tOASL2, exerted their anti-HSV activity in an RNase L-dependent pathway. Collectively, our results revealed the evolutionary conservation of tOASs in tree shrew and might offer helpful information for creating viral infection models using the Chinese tree shrew.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , Tupaia/genética , 2',5'-Oligoadenilato Sintetasa/química , Secuencia de Aminoácidos , Animales , Antivirales/metabolismo , Evolución Molecular , Herpesvirus Humano 1/fisiología , Familia de Multigenes , Especificidad de Órganos/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/genética , Virosis/enzimología
14.
RNA ; 21(5): 911-22, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25802409

RESUMEN

Argonaute proteins comprising Piwi-like and Argonaute-like proteins and their guiding small RNAs combat mobile DNA on the transcriptional and post-transcriptional level. While Piwi-like proteins and associated piRNAs are generally restricted to the germline, Argonaute-like proteins and siRNAs have been linked with transposon control in the germline as well as in the soma. Intriguingly, evolution has realized distinct Argonaute subfunctionalization patterns in different species but our knowledge about mammalian RNA interference pathways relies mainly on findings from the mouse model. However, mice differ from other mammals by absence of functional Piwil3 and expression of an oocyte-specific Dicer isoform. Thus, studies beyond the mouse model are required for a thorough understanding of function and evolution of mammalian RNA interference pathways. We high-throughput sequenced small RNAs from the male Tupaia belangeri germline, which represents a close outgroup to primates, hence phylogenetically links mice with humans. We identified transposon-derived piRNAs as well as siRNAs clearly contrasting the separation of piRNA- and siRNA-pathways into male and female germline as seen in mice. Genome-wide analysis of tree shrew transposons reveal that putative siRNAs map to transposon sites that form foldback secondary structures thus representing suitable Dicer substrates. In contrast piRNAs target transposon sites that remain accessible. With this we provide a basic mechanistic explanation how secondary structure of transposon transcripts influences piRNA- and siRNA-pathway utilization. Finally, our analyses of tree shrew piRNA clusters indicate A-Myb and the testis-expressed transcription factor RFX4 to be involved in the transcriptional regulation of mammalian piRNA clusters.


Asunto(s)
Proteínas Argonautas/metabolismo , Elementos Transponibles de ADN/genética , Inestabilidad Genómica/genética , Interferencia de ARN , ARN Interferente Pequeño/fisiología , Tupaia/genética , Animales , Secuencia de Bases , Evolución Molecular , Silenciador del Gen/fisiología , Células Germinativas/metabolismo , Masculino , Mamíferos/genética , Familia de Multigenes , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/aislamiento & purificación
15.
Mol Biol Evol ; 31(11): 2985-97, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25135944

RESUMEN

The origin of novel genes and their evolutionary fates are long-standing questions in evolutionary biology. These questions become more complicated for genes conserved across various lineages, such as TRIM5, an antiretroviral restriction factor and a retrovirus capsid sensor in immune signaling. TRIM5 has been subjected to numerous pathogenic challenges and undergone dynamic evolution, making it an excellent example for studying gene diversification. Previous studies among several species showed that TRIM5 gained genetic and functional novelty in a lineage-specific manner, either through gene duplication or a cyclophilin A retrotransposing into the TRIM5 locus, creating the gene fusion known as TRIM5-Cyclophilin A (TRIMCyp). To date, the general pattern of TRIM5 across the mammalian lineage remains elusive. In this study, we surveyed 36 mammalian genomes to verify a potentially novel TRIM5 pattern that uniquely seems to have occurred in tree shrews (Tupaia belangeri), and found that both gene duplication and retrotransposition worked jointly to form a specific TRIM5/TRIMCyp cluster not found among other mammals. Evolutionary analyses showed that tree shrew TRIMCyp (tsTRIMCyp) originated independently in comparison with previously reported TRIMCyps and underwent strong positive selection, whereas no signal of positive selection was detected for other tree shrew TRIM5 (tsTRIM5) genes. Functional assay results suggest a functional divergence between tsTRIMCyp and its closest paralog TRIM5-4, likely reflecting different fates under diverse evolutionary forces. These findings present a rare example of novel gene origination resulting from a combination of gene duplication, retrotransposition, and exon shuffling processes, providing a new paradigm to study genetic innovations and evolutionary fates of duplicated genes.


Asunto(s)
Proteínas Portadoras/genética , Ciclofilina A/genética , Duplicación de Gen , Proteínas Mutantes Quiméricas/genética , Retroelementos , Tupaia/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/metabolismo , Ciclofilina A/metabolismo , Evolución Molecular , Exones , Mutación del Sistema de Lectura , Expresión Génica , Intrones , Datos de Secuencia Molecular , Proteínas Mutantes Quiméricas/metabolismo , Selección Genética , Alineación de Secuencia , Tupaia/metabolismo , Dedos de Zinc
16.
Sci Rep ; 14(1): 74, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168759

RESUMEN

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that can cause gastrointestinal ulcers by affecting dopamine levels. Therefore, MPTP has been considered a toxic substance that causes gastric ulcer disease in experimental animals. In this study, tree shrews were used as the animal model of gastric mucosa injury, and MPTP was intraperitoneally injected at a lower MPTP dosage 2 mg/kg/day for 13 weeks, while tree shrews were not injected as the control group. Under the light microscope, local congestion or diffuse bleeding points of gastric mucosa and multiple redness and swelling bleeding symptoms on the inner wall were observed in the treatment group, as well as immune cell infiltration was found in HE staining, but no such phenomenon was observed in the control group. In order to explore the molecular basis of changes in MPTP induced gastric mucosa injury, the transcriptome and proteome data of gastric mucosa were analyzed. We observed significant differences in mRNA and protein expression levels under the influence of MPTP. The changes in mRNA and proteins are related to increased immune infiltration, cellular processes and angiogenesis. More differentially expressed genes play a role in immune function, especially the candidate genes RPL4 and ANXA1 with significant signal and core role. There are also differentially expressed genes that play a role in mucosal injury and shedding, especially candidate genes GAST and DDC with certain signaling and corresponding functions. Understanding the factors and molecular basis that affect the expression of related genes is crucial for coping with Emotionality gastric mucosa injury disease and developing new treatment methods to establish the ability to resist disease.


Asunto(s)
Tupaia , Tupaiidae , Animales , Tupaia/genética , Musarañas/genética , Proteómica , Análisis de Secuencia de ARN , ARN Mensajero , China , Estómago
17.
Artículo en Inglés | MEDLINE | ID: mdl-38215804

RESUMEN

Flavin-containing monooxygenases (FMOs) are a family of important drug oxygenation enzymes that, in humans, consist of five functional enzymes (FMO1-5) and a pseudogene (FMO6P). The tree shrew is a non-rodent primate-like species that is used in various biomedical studies, but its usefulness in drug metabolism research has not yet been investigated. In this study, tree shrew FMO1-6 cDNAs were isolated and characterized by sequence analysis, tissue expression, and metabolic function. Compared with human FMOs, tree shrew FMOs showed sequence identities of 85-90 % and 81-89 %, respectively, for cDNA and amino acids. Phylogenetic analysis showed that each tree shrew and human FMO were closely clustered. The genomic and genetic structures of the FMO genes were conserved in tree shrews and humans. Among the five tissue types analyzed (lung, heart, kidney, small intestine, and liver), FMO3 and FMO1 mRNAs were most abundant in liver and kidney, respectively. Recombinant tree shrew FMO1-6 proteins expressed in bacterial membranes all mediated benzydamine and trimethylamine N-oxygenations and methyl p-tolyl sulfide S-oxygenation. The selective human FMO3 substrate trimethylamine was predominantly metabolized by tree shrew FMO3. Additionally, tree shrew FMO6 was active toward trimethylamine, as is cynomolgus macaque FMO6, in contrast with the absence of activity of the human FMO6P pseudogene product. Tree shrew FMO1-6, which are orthologous to human FMOs (FMO1-5 and FMO6P) were identified, and tree shrew FMO3 has functional and molecular features generally comparable to those of human FMO3 as the predominant FMO in liver.


Asunto(s)
Metilaminas , Tupaia , Tupaiidae , Animales , Humanos , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Filogenia , Oxigenasas/genética , Oxigenasas/metabolismo , Microsomas Hepáticos , Proteínas Recombinantes/metabolismo , ADN Complementario
18.
Virulence ; 15(1): 2306795, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251668

RESUMEN

Epstein-Barr virus (EBV) infection in humans is ubiquitous and associated with various diseases. Remodeling of the immune microenvironment is the primary cause of EBV infection and pathogenesis; however, the underlying mechanism has not been fully elucidated. In this study, we used whole-transcriptome RNA-Seq to detect mRNAs, long non-coding RNAs (lncRNA), and microRNA (miRNA) profiles in the control group, 3 days, and 28 days after EBV infection, based on the tree shrew model that we reported previously. First, we estimated the proportion of 22 cell types in each sample using CIBERSORT software and identified 18 high-confidence DElncRNAs related to immune microenvironment regulation after EBV infection. Functional enrichment analysis of these differentially expressed lncRNAs primarily focused on the autophagy, endocytosis, and ferroptosis signalling pathways. Moreover, EBV infection affects miRNA expression patterns, and many miRNAs are silenced. Finally, three competing endogenous RNA regulatory networks were built using lncRNAs that significantly correlated with immune cell types, miRNAs that responded to EBV infection, and potentially targeted the mRNA of the miRNAs. Among them, MRPL42-AS-5 might act as an hsa-miR-296-5p "sponge" and compete with target mRNAs, thus increasing mRNA expression level, which could induce immune cell infiltration through the cellular senescence signalling pathway against EBV infection. Overall, we conducted a complete transcriptomic analysis of EBV infection in vivo for the first time and provided a novel perspective for further investigation of EBV-host interactions.


Asunto(s)
Infecciones por Virus de Epstein-Barr , MicroARNs , ARN Largo no Codificante , Humanos , Animales , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , ARN Endógeno Competitivo , Tupaia/genética , Tupaia/metabolismo , RNA-Seq , Tupaiidae/genética , Tupaiidae/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Redes Reguladoras de Genes
19.
Integr Zool ; 18(1): 45-62, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34936212

RESUMEN

Physiological adaptation of tree shrews (Tupaia belangeri) to changing environmental temperature has been reported in detail. However, the T. belangeri origin (mainland or island), population history, and adaptation to historical climate change remain largely unknown or controversial. Here, for the first time, we sequenced the simplified genome of 134 T. belangeri individuals from 12 populations in China and further resequenced one individual from each population. Using population genomic approaches, we first observed considerable genetic variation in T. belangeri. Moreover, T. belangeri populations formed obvious genetic structure and reflected different demographic histories; they generally exhibited high genetic diversity, although the isolated populations had relatively low genetic diversity. The results presented in this study indicate that T. b. modesta and T. b. tonquinia were separated recently and with a similar population dynamics. Second, physical barriers rather than distance were the driving factors of divergence, and environmental heterogeneity may play an important role in genetic differentiation in T. belangeri. Moreover, our analyses highlight the role of historical global climates in the T. belangeri population dynamics and indicate that the decrease of the T. belangeri population size may be due to the low temperature. Finally, we identified the olfaction-associated adaptive genes between different altitude populations and found that olfactory-related genes of high-altitude populations were selectively eliminated. Our study provides demographic history knowledge of T. belangeri; their adaption history offers new insights into their evolution and adaptation, and provides valuable baseline information for conservation measures.


Asunto(s)
Tupaia , Tupaiidae , Animales , Tupaia/genética , Metagenómica , Aclimatación , China
20.
Zool Res ; 44(6): 1080-1094, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37914523

RESUMEN

Tree shrews ( Tupaia belangeri chinensis) share a close relationship to primates and have been widely used in biomedical research. We previously established a spermatogonial stem cell (SSC)-based gene editing platform to generate transgenic tree shrews. However, the influences of long-term expansion on tree shrew SSC spermatogenesis potential remain unclear. Here, we examined the in vivo spermatogenesis potential of tree shrew SSCs cultured across different passages. We found that SSCs lost spermatogenesis ability after long-term expansion (>50 passages), as indicated by the failure to colonize the seminiferous epithelium and generate donor spermatogonia (SPG)-derived spermatocytes or spermatids marking spermatogenesis. RNA sequencing (RNA-seq) analysis of undifferentiated SPGs across different passages revealed significant gene expression changes after sub-culturing primary SPG lines for more than 40 passages on feeder layers. Specifically, DNA damage response and repair genes (e.g., MRE11, SMC3, BLM, and GEN1) were down-regulated, whereas genes associated with mitochondrial function (e.g., NDUFA9, NDUFA8, NDUFA13, and NDUFB8) were up-regulated after expansion. The DNA damage accumulation and mitochondrial dysfunction were experimentally validated in high-passage cells. Supplementation with nicotinamide adenine dinucleotide (NAD +) precursor nicotinamide riboside (NR) exhibited beneficial effects by reducing DNA damage accumulation and mitochondrial dysfunction in SPG elicited by long-term culture. Our research presents a comprehensive analysis of the genetic and physiological attributes critical for the sustained expansion of undifferentiated SSCs in tree shrews and proposes an effective strategy for extended in vitro maintenance.


Asunto(s)
Tupaia , Tupaiidae , Masculino , Animales , Tupaia/genética , Musarañas , Animales Modificados Genéticamente , Primates/genética , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA