Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.317
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 478: 59-75, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34029538

RESUMEN

Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Defectos del Tubo Neural/embriología , Tubo Neural/embriología , Animales , Polaridad Celular , Forma de la Célula , Proteínas del Citoesqueleto , Expresión Génica , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Morfogénesis , Mutación , Proteínas del Tejido Nervioso/genética , Placa Neural/citología , Placa Neural/embriología , Tubo Neural/citología , Defectos del Tubo Neural/genética , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Células Neuroepiteliales/ultraestructura , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
2.
Cell Microbiol ; 23(3): e13283, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33108050

RESUMEN

Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.


Asunto(s)
Uniones Intercelulares/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Toxoplasma/fisiología , Animales , Cadherinas/metabolismo , Claudina-1/metabolismo , Proteínas del Citoesqueleto/metabolismo , Perros , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Hidrazonas/farmacología , Uniones Intercelulares/ultraestructura , Células de Riñón Canino Madin Darby , Metaloproteasas/metabolismo , Movimiento , Naftoles/farmacología , Ocludina/metabolismo , Toxoplasma/enzimología , Toxoplasma/patogenicidad , Proteína de la Zonula Occludens-1/metabolismo
3.
J Am Soc Nephrol ; 32(6): 1409-1424, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795424

RESUMEN

BACKGROUND: Podocyte slit diaphragms (SDs) are intercellular junctions that function as size-selective filters, excluding most proteins from urine. Abnormalities in SDs cause proteinuria and nephrotic syndrome. Podocytes exhibit apicobasal polarity, which can affect fundamental aspects of cell biology, including morphology, intercellular junction formation, and asymmetric protein distribution along the plasma membrane. Apical polarity protein mutations cause nephrotic syndrome, and data suggest apical polarity proteins regulate SD formation. However, there is no evidence that basolateral polarity proteins regulate SDs. Thus, the role of apicobasal polarity in podocytes remains unclear. METHODS: Genetic manipulations and transgenic reporters determined the effects of disrupting apicobasal polarity proteins in Drosophila nephrocytes, which have SDs similar to those of mammalian podocytes. Confocal and electron microscopy were used to characterize SD integrity after loss of basolateral polarity proteins, and genetic-interaction studies illuminated relationships among apicobasal polarity proteins. RESULTS: The study identified four novel regulators of nephrocyte SDs: Dlg, Lgl, Scrib, and Par-1. These proteins comprise the basolateral polarity module and its effector kinase. The data suggest these proteins work together, with apical polarity proteins, to regulate SDs by promoting normal endocytosis and trafficking of SD proteins. CONCLUSIONS: Given the recognized importance of apical polarity proteins and SD protein trafficking in podocytopathies, the findings connecting basolateral polarity proteins to these processes significantly advance our understanding of SD regulation.


Asunto(s)
Membrana Celular/fisiología , Polaridad Celular , Drosophila/citología , Uniones Intercelulares , Proteínas de la Membrana/metabolismo , Podocitos/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endocitosis , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Uniones Intercelulares/ultraestructura , Proteínas de la Membrana/genética , Microscopía Confocal , Microscopía Electrónica , Modelos Biológicos , Podocitos/metabolismo , Transporte de Proteínas , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Vertebrados
4.
J Struct Biol ; 213(4): 107791, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34520869

RESUMEN

Cryo-electron tomography is the highest resolution tool available for structural analysis of macromolecular complexes within their native cellular environments. At present, data acquisition suffers from low throughput, in part due to the low probability of positioning a cell such that the subcellular structure of interest is on a region of the electron microscopy (EM) grid that is suitable for imaging. Here, we photo-micropatterned EM grids to optimally position endothelial cells so as to enable high-throughput imaging of cell-cell contacts. Lattice micropatterned grids increased the average distance between intercellular contacts and thicker cell nuclei such that the regions of interest were sufficiently thin for direct imaging. We observed a diverse array of membranous and cytoskeletal structures at intercellular contacts, demonstrating the utility of this technique in enhancing the rate of data acquisition for cellular cryo-electron tomography studies.


Asunto(s)
Comunicación Celular , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Imagenología Tridimensional/métodos , Uniones Intercelulares/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Cadherinas/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Humanos , Uniones Intercelulares/metabolismo , Microscopía de Fuerza Atómica/métodos , Microscopía Confocal/métodos , Reproducibilidad de los Resultados
5.
Biochem Biophys Res Commun ; 570: 206-213, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34311201

RESUMEN

Implantation is a highly organized process that involves an interaction between a competent blastocyst and a receptive uterus. Despite significant research efforts, the molecular mechanisms governing this complex process remain elusive. Here, we investigated the effect of dicalcin, an S100-like Ca2+-binding protein, on the attachment of choriocarcinoma cells (BeWo cells) onto a monolayer of endometrial carcinoma cells (Ishikawa cells). Extracellularly administered dicalcin bound to both BeWo and Ishikawa cells. Pretreatment of BeWo spheroids with dicalcin reduced the attachment ratio of the spheroids onto the monolayer, whereas that of Ishikawa cells showed no apparent change. We identified the partial amino acid sequence of human dicalcin that exhibited maximum suppression for BeWo spheroid attachment. Transmission electron microscopy analysis revealed that the dicalcin-derived peptide caused a dilation of the intercellular junction between BeWo and ISK cells. Peptide treatment of BeWo spheroids downregulated the expression of integrinαvß3 in BeWo cells, and induced alterations in their phalloidin-staining pattern, as measured by the length of each F-actin fiber and the thickness of the cortical stress fiber. Thus, dicalcin affects reorganization of the intracellular actin meshwork and subsequently the intensity of attachment, functioning as a novel suppressor of implantation.


Asunto(s)
Proteínas S100/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular , Línea Celular , Humanos , Integrina alfaVbeta3/metabolismo , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Ratones , Esferoides Celulares/patología
6.
Cell Mol Life Sci ; 77(21): 4397-4411, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31912195

RESUMEN

The isotype-specific composition of the keratin cytoskeleton is important for strong adhesion, force resilience, and barrier function of the epidermis. However, the mechanisms by which keratins regulate these functions are still incompletely understood. In this study, the role and significance of the keratin network for mechanical integrity, force transmission, and barrier formation were analyzed in murine keratinocytes. Following the time-course of single-cell wound closure, wild-type (WT) cells slowly closed the gap in a collective fashion involving tightly connected neighboring cells. In contrast, the mechanical response of neighboring cells was compromised in keratin-deficient cells, causing an increased wound area initially and an inefficient overall wound closure. Furthermore, the loss of the keratin network led to impaired, fragmented cell-cell junctions, and triggered a profound change in the overall cellular actomyosin architecture. Electric cell-substrate impedance sensing of cell junctions revealed a dysfunctional barrier in knockout (Kty-/-) cells compared to WT cells. These findings demonstrate that Kty-/- cells display a novel phenotype characterized by loss of mechanocoupling and failure to form a functional barrier. Re-expression of K5/K14 rescued the barrier defect to a significant extent and reestablished the mechanocoupling with remaining discrepancies likely due to the low abundance of keratins in that setting. Our study reveals the major role of the keratin network for mechanical homeostasis and barrier functionality in keratinocyte layers.


Asunto(s)
Queratinocitos/citología , Queratinas/metabolismo , Animales , Fenómenos Biomecánicos , Línea Celular , Epidermis/metabolismo , Epidermis/ultraestructura , Eliminación de Gen , Uniones Intercelulares/genética , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Queratinocitos/metabolismo , Queratinas/genética , Queratinas/ultraestructura , Ratones , Cicatrización de Heridas
7.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669068

RESUMEN

Tunneling nanotubes (TNTs) are recognized long membrane nanotubes connecting distance cells. In the last decade, growing evidence has shown that these subcellular structures mediate the specific transfer of cellular materials, pathogens, and electrical signals between cells. As intercellular bridges, they play a unique role in embryonic development, collective cell migration, injured cell recovery, cancer treatment resistance, and pathogen propagation. Although TNTs have been considered as potential drug targets for treatment, there is still a long way to go to translate the research findings into clinical practice. Herein, we emphasize the heterogeneous nature of TNTs by systemically summarizing the current knowledge on their morphology, structure, and biogenesis in different types of cells. Furthermore, we address the communication efficiency and biological outcomes of TNT-dependent transport related to diseases. Finally, we discuss the opportunities and challenges of TNTs as an exciting therapeutic approach by focusing on the development of efficient and safe drugs targeting TNTs.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Desarrollo de Medicamentos/métodos , Uniones Intercelulares/metabolismo , Neoplasias/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/genética , Transporte Biológico Activo/fisiología , Comunicación Celular/genética , Humanos , Infecciones/tratamiento farmacológico , Infecciones/metabolismo , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/patología , Uniones Intercelulares/ultraestructura , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo
8.
Cell Tissue Res ; 379(1): 75-92, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31713729

RESUMEN

In the molecular biological and ultrastructural studies of the peritubular wall cells encasing the seminiferous tubules of mammalian testes, we found it necessary to characterize the outermost cell layer bordering on the interstitial space in detail. For half a century, the extremely thin cells of this monolayer have in the literature been regarded as part of a lymphatic endothelium, in particular in rodents. However, our double-label immunofluorescence microscopical results have shown that in all six mammalian species examined, including three rodent ones (rat, mouse, guinea pig), this classification is not correct: the very attenuated cells of this monolayer are not of lymphatic endothelial nature as they do not contain established endothelial marker molecules. In particular, they do not contain claudin-5-positive tight junctions, VE-cadherin-positive adherens junctions, "lymph vessel endothelium hyaluronan receptor 1" (LYVE-1), podoplanin, protein myozap and "von Willebrand Factor" (vWF). By contrast and as controls, all these established marker molecules for the lymphatic endothelial cell type are found in the endothelia of the lymph and-partly also-blood vessels located nearby in the interstitial space. Thus, our results provide evidence that the monolayer cells covering the peritubular wall do not contain endothelial marker molecules and hence are not endothelial cells. We discuss possible methodological reasons for the maintenance of this incorrect cell type classification in the literature and emphasize the value of molecular analyses using multiple cell type-specific markers, also with respect to physiology and medical sciences.


Asunto(s)
Células Endoteliales , Uniones Intercelulares , Túbulos Seminíferos/ultraestructura , Testículo/anatomía & histología , Animales , Biomarcadores/análisis , Células Endoteliales/citología , Humanos , Inmunohistoquímica , Uniones Intercelulares/ultraestructura , Masculino , Mamíferos/anatomía & histología , Testículo/ultraestructura
9.
J Microsc ; 279(3): 189-196, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31828778

RESUMEN

The intercalated disc is an important structure in cardiomyocytes, as it is essential to maintain correct contraction and proper functioning of the heart. Adhesion and communication between cardiomyocytes are mediated by three main types of intercellular junctions, all residing in the intercalated disc: gap junctions, desmosomes and the areae compositae. Mutations in genes that encode junctional proteins, including αT-catenin (encoded by CTNNA3), have been linked to arrhythmogenic cardiomyopathy and sudden cardiac death. In mice, the loss of αT-catenin in cardiomyocytes leads to impaired heart function, fibrosis, changed expression of desmosomal proteins and increased risk for arrhythmias following ischemia-reperfusion. Currently, it is unclear how the intercalated disc and the intercellular junctions are organised in 3D in the hearts of this αT-catenin knockout (KO) mouse model. In order to scrutinise this, ventricular cardiac tissue of αT-catenin KO mice was used for volume electron microscopy (VEM), making use of Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), allowing a careful 3D reconstruction of the intercalated disc, including gap junctions and desmosomes. Although αT-catenin KO and control mice display a comparable organisation of the sarcomere and the different intercalated disc regions, the folds of the plicae region of the intercalated disc are longer and more narrow in the KO heart, and the pale region between the sarcomere and the intercalated disc is larger. In addition, αT-catenin KO intercalated discs appear to have smaller gap junctions and desmosomes in the plicae region, while gap junctions are larger in the interplicae region of the intercalated disc. Although the reason for this remodelling of the ultrastructure after αT-catenin deletion remains unclear, the excellent resolution of the FIB-SEM technology allows us to reconstruct details that were not reported before. LAY DESCRIPTION: Cardiomyocytes are cells that make up the heart muscle. As the chief cell type of the heart, cardiomyocytes are primarily involved in the contractile function of the heart that enables the pumping of blood around the body. Cardiac muscle cells are connected to each other at their short end by numerous intercellular junctions forming together a structure called the intercalated disc. These intercellular junctions comprise specific protein complexes, which are crucial for both intercellular adhesion and correct contraction of the heart. Imaging by conventional electron microscopy (EM) revealed a heavily folded intercalated disc with apparently random organization of the intercellular junctions. However, this conclusion was based on analysis in two dimensions (2D). 3D information of these structures is needed to unravel their true organization and function. In the present study, we used a more contemporary technique, called volume EM, to image and reconstruct the intercalated discs in 3D. By this approach, EM images are made from a whole block of tissue what differs significantly from classical EM methods that uses only one very thin slice for imaging. Further, we analyzed in comparison to normal mice also a mouse model for cardiomyopathy in which a specific protein of the cardiac intercellular junctions, αT-catenin, is absent. Volume EM revealed that in the hearts of these mice with cardiomyopathy, the finger-like folds of the intercalated disc are longer and thinner compared to control hearts. Also the intercellular junctions on the folded parts of the intercalated disc are smaller and their connection to the striated cytoskeleton seems further away. In conclusion, our volume EM study has expanded our understanding of 3D structures at the intercalated discs and will pave the way for more detailed models of disturbed cell-cell contacts associated with heart failure.


Asunto(s)
Desmosomas/ultraestructura , Uniones Comunicantes/ultraestructura , Miocardio/ultraestructura , Miocitos Cardíacos/ultraestructura , alfa Catenina/genética , Animales , Imagenología Tridimensional , Uniones Intercelulares/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica , Mutación
10.
Proc Natl Acad Sci U S A ; 113(19): 5287-92, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27114531

RESUMEN

Retinoschisin (RS1) is involved in cell-cell junctions in the retina, but is unique among known cell-adhesion proteins in that it is a soluble secreted protein. Loss-of-function mutations in RS1 lead to early vision impairment in young males, called X-linked retinoschisis. The disease is characterized by separation of inner retinal layers and disruption of synaptic signaling. Using cryo-electron microscopy, we report the structure at 4.1 Å, revealing double octamer rings not observed before. Each subunit is composed of a discoidin domain and a small N-terminal (RS1) domain. The RS1 domains occupy the centers of the rings, but are not required for ring formation and are less clearly defined, suggesting mobility. We determined the structure of the discoidin rings, consistent with known intramolecular and intermolecular disulfides. The interfaces internal to and between rings feature residues implicated in X-linked retinoschisis, indicating the importance of correct assembly. Based on this structure, we propose that RS1 couples neighboring membranes together through octamer-octamer contacts, perhaps modulated by interactions with other membrane components.


Asunto(s)
Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/ultraestructura , Adhesión Celular , Proteínas del Ojo/química , Proteínas del Ojo/ultraestructura , Uniones Intercelulares/ultraestructura , Retina/química , Retina/ultraestructura , Secuencia de Aminoácidos , Animales , Simulación por Computador , Dimerización , Uniones Intercelulares/química , Ratones , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Conformación Proteica
11.
Acta Med Okayama ; 73(2): 135-146, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31015748

RESUMEN

The basement membrane (BM) is composed of various extracellular molecules and regulates tissue regeneration and maintenance. Here, we demonstrate that collagen XVIII was spatiotemporally expressed in the BM during skin wound healing in a mouse excisional wound-splinting model. Re-epithelialization was detected at days 3 and 6 post-wounding. The ultrastructure of epidermal BM was discontinuous at day 3, whereas on day 6 a continuous BM was observed in the region proximal to the wound edge. Immunohistochemistry demonstrated that collagen XVIII was deposited in the BM zone beneath newly forming epidermis in day 3 and 6 wounds. Laminin-332, known to be the earliest BM component appearing in wounds, was colocalized with collagen XVIII in the epidermal BM zone at days 3 and 6. The deposition of α1(IV) collagen and nidogen-1 in the epidermal BM zone occurred later than that of collagen XVIII. We also observed the short isoform of collagen XVIII in the epidermal BM zone at day 3 post-wounding. Collectively, our results suggested that collagen XVIII plays a role in the formation of the dermal-epidermal junction during re-epithelialization, and that it is the short isoform that is involved in the early phase of re-epithelialization.


Asunto(s)
Membrana Basal/fisiología , Colágeno Tipo XVIII/metabolismo , Células Epidérmicas/metabolismo , Cicatrización de Heridas/fisiología , Animales , Membrana Basal/ultraestructura , Epidermis/patología , Uniones Intercelulares/ultraestructura , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
12.
Am J Physiol Cell Physiol ; 314(5): C519-C533, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351408

RESUMEN

The choroid plexus epithelial cells (CPECs) belong to a small group of polarized cells, where the Na+-K+-ATPase is expressed in the luminal membrane. The basic polarity of the cells is, therefore, still debated. We investigated the subcellular distribution of an array of proteins known to play fundamental roles either in establishing and maintaining basic cell polarity or in the polarized delivery and recycling of plasma membrane proteins. Immunofluorescence histochemical analysis was applied to determine the subcellular localization of apical and basolateral membrane determinants. Mass spectrometry analysis of CPECs isolated by fluorescence-activated cell sorting was applied to determine the expression of specific forms of the proteins. CPECs mainly express the cell-adhesive P-cadherin, which is localized to the lateral membranes. Proteins belonging to the Crumbs and partitioning defective (Par) protein complexes were all localized to the luminal membrane domain. Par-1 and the Scribble complex were localized to the basolateral membrane domain. Lethal(2) giant larvae homolog 2 (Lgl2) labeling was preferentially observed in the luminal membrane domain. Phosphatidylinositol 3,4,5-trisphosphate (PIP3) was immunolocalized to the basolateral membrane domain, while phosphatidylinositol 4,5-bisphosphate (PIP2) staining was most prominent in the luminal membrane domain along with the PIP3 phosphatase, Pten. The apical target-SNARE syntaxin-3 and the basolateral target-SNARE syntaxin-4 were both localized to the apical membrane domain in CPECs, which lack cellular expression of the clathrin adaptor protein AP-1B for basolateral protein recycling. In conclusion, the CPECs are conventionally polarized, but express P-cadherin at cell-cell contacts, and Lgl2 and syntaxin-4 in the luminal plasma membrane domain.


Asunto(s)
Membrana Celular/metabolismo , Polaridad Celular , Plexo Coroideo/metabolismo , Células Epiteliales/metabolismo , Uniones Intercelulares/metabolismo , Selectina-P/metabolismo , Proteínas Qa-SNARE/metabolismo , Animales , Membrana Celular/ultraestructura , Plexo Coroideo/ultraestructura , Células Epiteliales/ultraestructura , Uniones Intercelulares/ultraestructura , Masculino , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteómica/métodos , beta Carioferinas/metabolismo
13.
Histochem Cell Biol ; 149(5): 479-490, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29508067

RESUMEN

The intercalated disc (ID) contains different kinds of intercellular junctions: gap junctions (GJs), desmosomes and areae compositae, essential for adhesion and communication between adjacent cardiomyocytes. The junctions can be identified based on their morphology when imaged using transmission electron microscopy (TEM), however, only with very limited information in the z-dimension. The application of volume EM techniques can give insight into the three-dimensional (3-D) organization of complex biological structures. In this study, we generated 3-D datasets using serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam SEM (FIB-SEM), the latter resulting in datasets with 5 nm isotropic voxels. We visualized cardiomyocytes in murine ventricular heart tissue and, for the first time, we could three-dimensionally reconstruct the ID including desmosomes and GJs with 5 nm precision in a large volume. Results show in three dimensions a highly folded structure of the ID, with the presence of GJs and desmosomes in both plicae and interplicae regions. We observed close contact of GJs with mitochondria and a variable spatial distribution of the junctions. Based on measurements of the shape of the intercellular junctions in 3-D, it is seen that GJs and desmosomes vary in size, depending on the region within the ID. This demonstrates that volume EM is essential to visualize morphological changes and its potential to quantitatively determine structural changes between normal and pathological conditions, e.g., cardiomyopathies.


Asunto(s)
Imagenología Tridimensional , Uniones Intercelulares/ultraestructura , Miocitos Cardíacos/ultraestructura , Animales , Ratones , Microscopía Electrónica de Rastreo , Miocitos Cardíacos/citología , Fenotipo
14.
Cell Tissue Res ; 372(3): 445-456, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29460002

RESUMEN

TMPRSS3 (Trans-membrane Serine Protease 3) is a type II trans-membrane serine protease that has proteolytic activity essential for hearing. Mutations in the gene cause non-syndromic autosomal recessive deafness (DFNB8/10) in humans. Knowledge about its cellular distribution in the human inner ear may increase our understanding of its physiological role and involvement in deafness, ultimately leading to therapeutic interventions. In this study, we used super-resolution structured illumination microscopy for the first time together with transmission electron microscopy to localize the TMPRSS3 protein in the human organ of Corti. Archival human cochleae were dissected out during petroclival meningioma surgery. Microscopy with Zeiss LSM710 microscope achieved a lateral resolution of approximately 80 nm. TMPRSS3 was found to be associated with actin in both inner and outer hair cells. TMPRSS3 was located in cell surface-associated cytoskeletal bodies (surfoskelosomes) in inner and outer pillar cells and Deiters cells and in subcuticular organelles in outer hair cells. Our results suggest that TMPRSS3 proteolysis is linked to hair cell sterociliary mechanics and to the actin/microtubule networks that support cell motility and integrity.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Órgano Espiral/enzimología , Serina Endopeptidasas/metabolismo , Actinas/metabolismo , Adulto , Anciano , Femenino , Humanos , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Masculino , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Persona de Mediana Edad , Órgano Espiral/citología , Órgano Espiral/ultraestructura
15.
Neurourol Urodyn ; 37(1): 89-98, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28370277

RESUMEN

AIMS: To explore the ultrastructure of interstitial cells in the upper lamina propria of the human bladder, to describe the spatial relationships and to investigate cell-cell contacts. METHODS: Focused ion beam scanning electron microscopy (FIB-SEM), 3-View SEM and confocal laser scanning microscopy were used to analyze the 3D ultrastructure of the upper lamina propria in male and female human bladders. RESULTS: 3View-SEM image stacks as large as 59 × 59 × 17 µm3 (xyz) at a resolution of 16 × 16 × 50 nm3 and high resolution (5 × 5 × 10 nm3 ) FIB-SEM stacks could be analyzed. Interstitial cells with myoid differentiation (mIC) and fibroblast like interstitial cells (fIC) were the major cell types in the upper lamina propria. The flat, sheet-like ICs were oriented strictly parallel to the urothelium. No spindle shaped cells were present. We furthermore identified one branched cell (bIC) with several processes contacting urothelial cells by penetrating the basal membrane. This cell did not make any contacts to other ICs within the upper lamina propria. We found no evidence for the occurrence of telocytes in the upper lamina propria. CONCLUSIONS: Comprehensive 3D-ultrastructural analysis of the human bladder confirmed distinct subtypes of interstitial cells. We provide evidence for a foremost unknown direct connection between a branched interstitial cell and urothelial cells of which the functional role has still to be elucidated. 3D-ultrastructure analyses at high resolution are needed to further define the subpopulations of lamina propria cells and cell-cell interactions.


Asunto(s)
Células Epiteliales/ultraestructura , Uniones Intercelulares/ultraestructura , Microscopía/métodos , Membrana Mucosa/ultraestructura , Vejiga Urinaria/ultraestructura , Urotelio/ultraestructura , Células Epiteliales/citología , Femenino , Humanos , Imagenología Tridimensional , Inmunohistoquímica , Masculino , Microscopía Confocal , Microscopía Electrónica de Rastreo , Membrana Mucosa/citología , Vejiga Urinaria/citología , Urotelio/citología
16.
Kidney Int ; 91(5): 1070-1087, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28139295

RESUMEN

Hypercalcemia can cause renal dysfunction such as nephrogenic diabetes insipidus (NDI), but the mechanisms underlying hypercalcemia-induced NDI are not well understood. To elucidate the early molecular changes responsible for this disorder, we employed mass spectrometry-based proteomic analysis of inner medullary collecting ducts (IMCD) isolated from parathyroid hormone-treated rats at onset of hypercalcemia-induced NDI. Forty-one proteins, including the water channel aquaporin-2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the downregulated proteins were associated with cytoskeletal protein binding, regulation of actin filament polymerization, and cell-cell junctions. Targeted LC-MS/MS and immunoblot studies confirmed the downregulation of 16 proteins identified in the initial proteomic analysis and in additional experiments using a vitamin D treatment model of hypercalcemia-induced NDI. Evaluation of transcript levels and estimated half-life of the downregulated proteins suggested enhanced protein degradation as the possible regulatory mechanism. Electron microscopy showed defective intercellular junctions and autophagy in the IMCD cells from both vitamin D- and parathyroid hormone-treated rats. A significant increase in the number of autophagosomes was confirmed by immunofluorescence labeling of LC3. Colocalization of LC3 and Lamp1 with aquaporin-2 and other downregulated proteins was found in both models. Immunogold electron microscopy revealed aquaporin-2 in autophagosomes in IMCD cells from both hypercalcemia models. Finally, parathyroid hormone withdrawal reversed the NDI phenotype, accompanied by termination of aquaporin-2 autophagic degradation and normalization of both nonphoshorylated and S256-phosphorylated aquaporin-2 levels. Thus, enhanced autophagic degradation of proteins plays an important role in the initial mechanism of hypercalcemic-induced NDI.


Asunto(s)
Acuaporina 2/metabolismo , Autofagia , Diabetes Insípida Nefrogénica/fisiopatología , Hipercalcemia/complicaciones , Túbulos Renales Colectores/fisiopatología , Animales , Cromatografía Liquida , Diabetes Insípida Nefrogénica/etiología , Diabetes Insípida Nefrogénica/metabolismo , Dihidrotaquisterol/toxicidad , Modelos Animales de Enfermedad , Regulación hacia Abajo , Técnica del Anticuerpo Fluorescente , Semivida , Humanos , Hipercalcemia/inducido químicamente , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Túbulos Renales Colectores/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Masculino , Microscopía Inmunoelectrónica , Proteínas Asociadas a Microtúbulos/metabolismo , Hormona Paratiroidea/farmacología , Fosforilación , Proteolisis , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
17.
Biochem Biophys Res Commun ; 493(2): 1057-1062, 2017 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-28928095

RESUMEN

We have found that A Disintegrin And Metalloproteinase-9 (ADAM9) localises to cell-cell junctions with VE-Cadherin in confluent endothelial monolayers. Co-cultures of cells separately transfected with ADAM9-EGFP or ADAM9-HA showed expression is required in two adjacent cells for localisation to cell-cell junctions suggesting the ADAM9 ectodomain may self-associate. A direct interaction between ADAM9 ectodomains was confirmed using recombinant proteins and an ELISA based method. As the ADAM9 ectodomain can also exist as a soluble form physiologically, we examined if this could inhibit endothelial functions dependent on cell-cell junctions. The soluble ADAM9 ectodomain could not increase endothelial monolayer permeability or inhibit monocyte-endothelial adhesion, but could inhibit monocyte-endothelial transmigration. These novel findings point to ADAM9 playing an important role in endothelial cell biology that is distinct from the other ADAMs.


Asunto(s)
Proteínas ADAM/metabolismo , Células Endoteliales/citología , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/metabolismo , Monocitos/citología , Migración Transendotelial y Transepitelial , Proteínas ADAM/análisis , Animales , Línea Celular , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Uniones Intercelulares/ultraestructura , Proteínas de la Membrana/análisis , Ratones , Monocitos/metabolismo , Dominios Proteicos
18.
Curr Opin Nephrol Hypertens ; 26(3): 148-153, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28212178

RESUMEN

PURPOSE OF REVIEW: The podocyte slit diaphragm is probably the least understood component of the kidney filtration barrier. In this review, we aim to integrate the most recent findings on the molecular make-up and structural architecture of this specialized cell-cell junction into a current concept of glomerular filtration. RECENT FINDINGS: Analysis of cryopreserved mammalian tissue revealed a bipartite composition of the slit diaphragm. Single NEPH1 molecules span the lower part of the slit close to the glomerular basement membrane whereas NEPHRIN molecules are positioned in the apical part toward Bowman's space. This molecular arrangement could lead to heterogeneous ellipsoidal and circular pores, which are mainly located in the central region of the slit diaphragm. SUMMARY: Despite having been first identified in the 1970s, the slit diaphragm's structural architecture has not been fully elucidated to date and remains an area of intense research and scientific debate. The slit diaphragm has been initially described as a rigid 'zipper-like' structure in which periodic, rod-like units extend from a podocyte foot processes to a linear central bar, giving rise to homogeneous 4 × 14 nm pores. Several recent findings have challenged these long-held beliefs and instead pointed to an unanticipated complexity of slit diaphragm structure. High-resolution ultrastructural analysis found evidence that the slit diaphragm is a dynamic and adjustable cell-cell junction that forms a nonclogging barrier within the renal filtration system.


Asunto(s)
Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Glomérulos Renales/fisiología , Proteínas de la Membrana/metabolismo , Podocitos/fisiología , Podocitos/ultraestructura , Animales , Humanos , Uniones Intercelulares/fisiología , Podocitos/metabolismo
19.
J Theor Biol ; 421: 101-111, 2017 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-28377302

RESUMEN

Mechanical force regulates the formation and growth of cell-cell junctions. Cadherin is a prominent homotypic cell adhesion molecule that plays a crucial role in establishment of intercellular adhesion. It is known that the transmitted force through the cadherin-mediated junctions directly correlates with the growth and enlargement of the junctions. In this paper, we propose a physical model for the structural evolution of cell-cell junctions subjected to pulling tractions, using the Bell-Dembo-Bongard thermodynamic model. Cadherins have multiple adhesive states and may establish slip or catch bonds depending on the Ca2+ concentration. We conducted a comparative study between the force-dependent behavior of clusters of slip and catch bonds. The results show that the clusters of catch bonds feature some hallmarks of cell mechanotransduction in response to the pulling traction. This is a passive thermodynamic response and is entirely controlled by the effect of mechanical work of the pulling force on the free energy landscape of the junction.


Asunto(s)
Fenómenos Biomecánicos , Cadherinas/metabolismo , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Mecanotransducción Celular/fisiología , Modelos Moleculares , Termodinámica
20.
Proc Natl Acad Sci U S A ; 111(45): 16011-6, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25355906

RESUMEN

The cadherins Fat and Dachsous regulate cell polarity and proliferation via their heterophilic interactions at intercellular junctions. Their ectodomains are unusually large because of repetitive extracellular cadherin (EC) domains, which raises the question of how they fit in regular intercellular spaces. Cadherins typically exhibit a linear topology through the binding of Ca(2+) to the linker between the EC domains. Our electron-microscopic observations of mammalian Fat4 and Dachsous1 ectodomains, however, revealed that, although their N-terminal regions exhibit a linear configuration, the C-terminal regions are kinked with multiple hairpin-like bends. Notably, certain EC-EC linkers in Fat4 and Dachsous1 lost Ca(2+)-binding amino acids. When such non-Ca(2+)-binding linkers were substituted for a normal linker in E-cadherin, the mutant E-cadherins deformed more extensively than the wild-type molecule. To simulate cadherin structures with non-Ca(2+)-binding linkers, we used an elastic network model and confirmed that bent configurations can be generated by deformation of non-Ca(2+)-binding linkers. These findings suggest that Fat and Dachsous self-bend due to the loss of Ca(2+)-binding amino acids from specific EC-EC linkers, and can therefore adapt to confined spaces.


Asunto(s)
Cadherinas/metabolismo , Calcio/metabolismo , Uniones Intercelulares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Células HEK293 , Humanos , Uniones Intercelulares/genética , Uniones Intercelulares/ultraestructura , Ratones , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA