Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 181(1): 6, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32243796

RESUMEN

Ervebo is the first licensed vaccine for prevention of Ebola virus disease. The vaccine, originally developed by the Public Health Agency of Canada, is delivered in a single 1 mL dose and has been delivered to >200,000 people in an ongoing 2018-2020 outbreak of disease. To view this Bench to Bedside, open or download the PDF.


Asunto(s)
Anticuerpos Antivirales/inmunología , Brotes de Enfermedades/prevención & control , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Vacunación Masiva , Aprobación de Drogas , Ebolavirus , Humanos , Proteínas del Envoltorio Viral/inmunología
2.
Cell ; 177(6): 1566-1582.e17, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31104840

RESUMEN

Ebola virus (EBOV) remains a public health threat. We performed a longitudinal study of B cell responses to EBOV in four survivors of the 2014 West African outbreak. Infection induced lasting EBOV-specific immunoglobulin G (IgG) antibodies, but their subclass composition changed over time, with IgG1 persisting, IgG3 rapidly declining, and IgG4 appearing late. Striking changes occurred in the immunoglobulin repertoire, with massive recruitment of naive B cells that subsequently underwent hypermutation. We characterized a large panel of EBOV glycoprotein-specific monoclonal antibodies (mAbs). Only a small subset of mAbs that bound glycoprotein by ELISA recognized cell-surface glycoprotein. However, this subset contained all neutralizing mAbs. Several mAbs protected against EBOV disease in animals, including one mAb that targeted an epitope under evolutionary selection during the 2014 outbreak. Convergent antibody evolution was seen across multiple donors, particularly among VH3-13 neutralizing antibodies specific for the GP1 core. Our study provides a benchmark for assessing EBOV vaccine-induced immunity.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Linfocitos B/fisiología , Fiebre Hemorrágica Ebola/inmunología , Adulto , Secuencia de Aminoácidos/genética , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/metabolismo , Chlorocebus aethiops , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/genética , Ebolavirus/metabolismo , Ebolavirus/patogenicidad , Epítopos/sangre , Femenino , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoglobulina G/inmunología , Células Jurkat , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos BALB C , Sobrevivientes , Células Vero , Proteínas del Envoltorio Viral/genética
3.
Cell ; 169(5): 891-904.e15, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525756

RESUMEN

While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here, we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N terminus of the ebolavirus glycoproteins (GPs) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Regiones Determinantes de Complementariedad , Reacciones Cruzadas , Ebolavirus/inmunología , Mapeo Epitopo , Epítopos de Linfocito B/inmunología , Femenino , Hurones , Cobayas , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares
4.
Cell ; 169(5): 878-890.e15, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525755

RESUMEN

Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GPCL) generated in host cell endosomes. Only a few somatic hypermutations are required for broad antiviral activity, and germline-approximating variants display enhanced GPCL recognition, suggesting that such antibodies could be elicited more efficiently with suitably optimized GP immunogens. Our findings inform the development of both broadly effective immunotherapeutics and vaccines against filoviruses.


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/inmunología , Sobrevivientes , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Reacciones Cruzadas , Ebolavirus/clasificación , Ebolavirus/inmunología , Femenino , Hurones , Fiebre Hemorrágica Ebola/virología , Humanos , Cinética , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Alineación de Secuencia , Células Vero
5.
Immunity ; 51(6): 969, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31951540

RESUMEN

Promising vaccines and results from recent clinical trials of therapeutic antibodies against Ebola virus offer hope for an end to this devastating disease. We asked three investigators in the field to share their views on the remaining challenges and important future research directions as we work toward controlling Ebola virus infection.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Humanos
6.
Proc Natl Acad Sci U S A ; 121(7): e2316960121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319964

RESUMEN

The Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV)-one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here, we describe a universal Ebola virus vaccine approach using a structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vacunas Virales , Humanos , Animales , Ratones , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Sueros Inmunes
7.
PLoS Pathog ; 20(3): e1012038, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489257

RESUMEN

Ebola disease (EBOD) remains a significant and ongoing threat to African countries, characterized by a mortality rate of 25% to 90% in patients with high viral load and significant transmissibility. The most recent outbreak, reported in Uganda in September 2022, was declared officially over in January 2023. However, it was caused by the Sudan Ebola virus (SUDV), a culprit species not previously reported for a decade. Since its discovery in 1976, the management of EBOD has primarily relied on supportive care. Following the devastating outbreak in West Africa from 2014 to 2016 secondary to the Zaire Ebola virus (EBOV), where over 28,000 lives were lost, dedicated efforts to find effective therapeutic agents have resulted in considerable progress in treating and preventing disease secondary to EBOV. Notably, 2 monoclonal antibodies-Ebanga and a cocktail of monoclonal antibodies, called Inmazeb-received Food and Drug Administration (FDA) approval in 2020. Additionally, multiple vaccines have been approved for EBOD prevention by various regulatory bodies, with Ervebo, a recombinant vesicular stomatitis virus-vectored vaccine against EBOV being the first vaccine to receive approval by the FDA in 2019. This review covers the key signs and symptoms of EBOD, its modes of transmission, and the principles guiding supportive care. Furthermore, it explores recent advancements in treating and preventing EBOD, highlighting the unique properties of each therapeutic agent and the ongoing progress in discovering new treatments.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vacunas Virales , Humanos , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Anticuerpos Antivirales , Ebolavirus/genética , Anticuerpos Monoclonales/uso terapéutico , Uganda/epidemiología
8.
PLoS Pathog ; 20(6): e1012262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924060

RESUMEN

Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths. In 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea and Tanzania resulting in over 49 confirmed or suspected cases; 41 of which were fatal. There are no clearly defined correlates of protection against these VHF, impeding targeted vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Ebola virus, Sudan virus, Marburg virus) and an arenavirus (Lassa virus). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19/AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Ebola virus, Sudan virus and Marburg virus challenges in a small animal model.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Fiebre de Lassa , Virus Lassa , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Ratones , Ebolavirus/inmunología , Virus Lassa/inmunología , Marburgvirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/inmunología , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/prevención & control , Vacunas Virales/inmunología , Humanos , Vacunación , Femenino , Anticuerpos Antivirales/inmunología , Inmunogenicidad Vacunal , Vacunas contra el Virus del Ébola/inmunología
9.
N Engl J Med ; 387(26): 2411-2424, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36516078

RESUMEN

BACKGROUND: Questions remain concerning the rapidity of immune responses and the durability and safety of vaccines used to prevent Zaire Ebola virus disease. METHODS: We conducted two randomized, placebo-controlled trials - one involving adults and one involving children - to evaluate the safety and immune responses of three vaccine regimens against Zaire Ebola virus disease: Ad26.ZEBOV followed by MVA-BN-Filo 56 days later (the Ad26-MVA group), rVSVΔG-ZEBOV-GP followed by placebo 56 days later (the rVSV group), and rVSVΔG-ZEBOV-GP followed by rVSVΔG-ZEBOV-GP 56 days later (the rVSV-booster group). The primary end point was antibody response at 12 months, defined as having both a 12-month antibody concentration of at least 200 enzyme-linked immunosorbent assay units (EU) per milliliter and an increase from baseline in the antibody concentration by at least a factor of 4. RESULTS: A total of 1400 adults and 1401 children underwent randomization. Among both adults and children, the incidence of injection-site reactions and symptoms (e.g., feverishness and headache) was higher in the week after receipt of the primary and second or booster vaccinations than after receipt of placebo but not at later time points. These events were largely low-grade. At month 12, a total of 41% of adults (titer, 401 EU per milliliter) and 78% of children (titer, 828 EU per milliliter) had a response in the Ad26-MVA group; 76% (titer, 992 EU per milliliter) and 87% (titer, 1415 EU per milliliter), respectively, had a response in the rVSV group; 81% (titer, 1037 EU per milliliter) and 93% (titer, 1745 EU per milliliter), respectively, had a response in the rVSV-booster group; and 3% (titer, 93 EU per milliliter) and 4% (titer, 67 EU per milliliter), respectively, had a response in the placebo group (P<0.001 for all comparisons of vaccine with placebo). In both adults and children, antibody responses with vaccine differed from those with placebo beginning on day 14. CONCLUSIONS: No safety concerns were identified in this trial. With all three vaccine regimens, immune responses were seen from day 14 through month 12. (Funded by the National Institutes of Health and others; PREVAC ClinicalTrials.gov number, NCT02876328; EudraCT numbers, 2017-001798-18 and 2017-001798-18/3rd; and Pan African Clinical Trials Registry number, PACTR201712002760250.).


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Adulto , Niño , Humanos , Anticuerpos Antivirales , República Democrática del Congo , Vacunas contra el Virus del Ébola/uso terapéutico , Fiebre Hemorrágica Ebola/prevención & control
10.
J Virol ; 98(3): e0162723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305150

RESUMEN

Ebola virus disease (EVD) caused by Ebola virus (EBOV) is a severe, often fatal, hemorrhagic disease. A critical component of the public health response to curb EVD epidemics is the use of a replication-competent, recombinant vesicular stomatitis virus (rVSV)-vectored Ebola vaccine, rVSVΔG-ZEBOV-GP (ERVEBO). In this Gem, we will discuss the past and ongoing development of rVSVΔG-ZEBOV-GP, highlighting the importance of basic science and the strength of public-private partnerships to translate fundamental virology into a licensed VSV-vectored Ebola vaccine.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Vectores Genéticos , Fiebre Hemorrágica Ebola , Vesiculovirus , Humanos , Vacunas contra el Virus del Ébola/genética , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/genética , Ebolavirus/inmunología , Vectores Genéticos/genética , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Vesiculovirus/genética , Asociación entre el Sector Público-Privado
11.
Mol Ther ; 32(10): 3695-3711, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39217415

RESUMEN

As emerging and re-emerging pathogens, filoviruses, especially Ebola virus (EBOV), pose a great threat to public health and require sustained attention and ongoing surveillance. More vaccines and antiviral drugs are imperative to be developed and stockpiled to respond to unpredictable outbreaks. Virus-like vesicles, generated by alphavirus replicons expressing homogeneous or heterogeneous glycoproteins (GPs), have demonstrated the capacity of self-propagation and shown great potential in vaccine development. Here, we describe a novel class of EBOV-like vesicles (eVLVs) incorporating both EBOV GP and VP40. The eVLVs exhibited similar antigenicity as EBOV. In murine models, eVLVs were highly attenuated and elicited robust GP-specific antibodies with neutralizing activities. Importantly, a single dose of eVLVs conferred complete protection in a surrogate EBOV lethal mouse model. Furthermore, our VLVs strategy was also successfully applied to Marburg virus (MARV), the representative member of the genus Marburgvirus. Taken together, our findings indicate the feasibility of an alphavirus-derived VLVs strategy in combating infection of filoviruses represented by EBOV and MARV, which provides further evidence of the potential of this platform for universal live-attenuated vaccine development.


Asunto(s)
Anticuerpos Antivirales , Modelos Animales de Enfermedad , Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Ebolavirus/inmunología , Ratones , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Anticuerpos Antivirales/inmunología , Vacunas contra el Virus del Ébola/inmunología , Humanos , Anticuerpos Neutralizantes/inmunología , Glicoproteínas/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Marburgvirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Femenino , Proteínas de la Matriz Viral
12.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110410

RESUMEN

Despite more than 300,000 rVSVΔG-ZEBOV-glycoprotein (GP) vaccine doses having been administered during Ebola virus disease (EVD) outbreaks in the Democratic Republic of the Congo (DRC) between 2018 and 2020, seroepidemiologic studies of vaccinated Congolese populations are lacking. This study examines the antibody response at 21 d and 6 mo postvaccination after single-dose rVSVΔG-ZEBOV-GP vaccination among EVD-exposed and potentially exposed populations in the DRC. We conducted a longitudinal cohort study of 608 rVSVΔG-ZEBOV-GP-vaccinated individuals during an EVD outbreak in North Kivu Province, DRC. Participants provided questionnaires and blood samples at three study visits (day 0, visit 1; day 21, visit 2; and month 6, visit 3). Anti-GP immunoglobulin G (IgG) antibody titers were measured in serum by the Filovirus Animal Nonclinical Group anti-Ebola virus GP IgG enzyme-linked immunosorbent assay. Antibody response was defined as an antibody titer that had increased fourfold from visit 1 to visit 2 and was above four times the lower limit of quantification at visit 2; antibody persistence was defined as a similar increase from visit 1 to visit 3. We then examined demographics for associations with follow-up antibody titers using generalized linear mixed models. A majority of the sample, 87.2%, had an antibody response at visit 2, and 95.6% demonstrated antibody persistence at visit 3. Being female and of young age was predictive of a higher antibody titer postvaccination. Antibody response and persistence after Ebola vaccination was robust in this cohort, confirming findings from outside of the DRC.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Inmunogenicidad Vacunal/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , Niño , República Democrática del Congo , Brotes de Enfermedades/prevención & control , Femenino , Glicoproteínas/inmunología , Humanos , Masculino , Persona de Mediana Edad , Estudios Seroepidemiológicos , Vacunación/métodos , Proteínas del Envoltorio Viral/inmunología , Adulto Joven
13.
J Infect Dis ; 229(4): 1068-1076, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37673423

RESUMEN

BACKGROUND: In response to recent Ebola epidemics, vaccine development against the Zaire ebolavirus (EBOV) has been fast-tracked in the past decade. Health care providers and frontliners working in Ebola-endemic areas are at high risk of contracting and spreading the virus. METHODS: This study assessed the safety and immunogenicity of the 2-dose heterologous Ad26.ZEBOV, MVA-BN-Filo vaccine regimen (administered at a 56-day interval) among 699 health care providers and frontliners taking part in a phase 2, monocentric, randomized vaccine trial in Boende, the Democratic Republic of Congo. The first participant was enrolled and vaccinated on 18 December 2019. Serious adverse events were collected up to 6 months after the last received dose. The EBOV glycoprotein FANG ELISA (Filovirus Animal Nonclinical Group enzyme-linked immunosorbent assay) was used to measure the immunoglobulin G-binding antibody response to the EBOV glycoprotein. RESULTS: The vaccine regimen was well tolerated with no vaccine-related serious adverse events reported. Twenty-one days after the second dose, an EBOV glycoprotein-specific binding antibody response was observed in 95.2% of participants. CONCLUSIONS: The 2-dose vaccine regimen was well tolerated and led to a high antibody response among fully vaccinated health care providers and frontliners in Boende.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vacuna contra Viruela , Animales , Humanos , República Democrática del Congo , Anticuerpos Antivirales , Glicoproteínas , Inmunogenicidad Vacunal , Vacunas Atenuadas
14.
Clin Infect Dis ; 79(4): 888-900, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657084

RESUMEN

BACKGROUND: Shorter prophylactic vaccine schedules may offer more rapid protection against Ebola in resource-limited settings. METHODS: This randomized, observer-blind, placebo-controlled, phase 2 trial conducted in 5 sub-Saharan African countries included people without human immunodeficiency virus (HIV) (PWOH, n = 249) and people with HIV (PWH, n = 250). Adult participants received 1 of 2 accelerated Ebola vaccine regimens (MVA-BN-Filo, Ad26.ZEBOV administered 14 days apart [n = 79] or Ad26.ZEBOV, MVA-BN-Filo administered 28 days apart [n = 322]) or saline/placebo (n = 98). The primary endpoints were safety (adverse events [AEs]) and immunogenicity (Ebola virus [EBOV] glycoprotein-specific binding antibody responses). Binding antibody responders were defined as participants with a >2.5-fold increase from baseline or the lower limit of quantification if negative at baseline. RESULTS: The mean age was 33.4 years, 52% of participants were female, and among PWH, the median CD4+ cell count was 560.0 (interquartile range, 418.0-752.0) cells/µL. AEs were generally mild/moderate with no vaccine-related serious AEs or remarkable safety profile differences by HIV status. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody response rates in vaccine recipients were 99% for the 14-day regimen (geometric mean concentrations [GMCs]: 5168 enzyme-linked immunosorbent assay units [EU]/mL in PWOH; 2509 EU/mL in PWH) and 98% for the 28-day regimen (GMCs: 6037 EU/mL in PWOH; 2939 EU/mL in PWH). At 12 months post-dose 2, GMCs in PWOH and PWH were 635 and 514 EU/mL, respectively, for the 14-day regimen and 331 and 360 EU/mL, respectively, for the 28-day regimen. CONCLUSIONS: Accelerated 14- and 28-day Ebola vaccine regimens were safe and immunogenic in PWOH and PWH in Africa. Clinical Trials Registration. NCT02598388.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra el Virus del Ébola , Infecciones por VIH , Fiebre Hemorrágica Ebola , Humanos , Vacunas contra el Virus del Ébola/inmunología , Vacunas contra el Virus del Ébola/efectos adversos , Vacunas contra el Virus del Ébola/administración & dosificación , Adulto , Femenino , Masculino , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Anticuerpos Antivirales/sangre , Adulto Joven , Persona de Mediana Edad , África del Sur del Sahara , Inmunogenicidad Vacunal , Ebolavirus/inmunología , Esquemas de Inmunización , Adolescente
15.
Clin Infect Dis ; 78(4): 870-879, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37967326

RESUMEN

BACKGROUND: The rVSVΔG-ZEBOV-GP vaccine (ERVEBO®) is a single-dose, live-attenuated, recombinant vesicular stomatitis virus vaccine indicated for the prevention of Ebola virus disease (EVD) caused by Zaire ebolavirus in individuals 12 months of age and older. METHODS: The Partnership for Research on Ebola VACcination (PREVAC) is a multicenter, phase 2, randomized, double-blind, placebo-controlled trial of 3 vaccine strategies in healthy children (ages 1-17) and adults, with projected 5 years of follow-up (NCT02876328). Using validated assays (GP-ELISA and PRNT), we measured antibody responses after 1-dose rVSVΔG-ZEBOV-GP, 2-dose rVSVΔG-ZEBOV-GP (given on Day 0 and Day 56), or placebo. Furthermore, we quantified vaccine virus shedding in a subset of children's saliva using RT-PCR. RESULTS: In total, 819 children and 783 adults were randomized to receive rVSVΔG-ZEBOV-GP (1 or 2 doses) or placebo. A single dose of rVSVΔG-ZEBOV-GP increased antibody responses by Day 28 that were sustained through Month 12. A second dose of rVSVΔG-ZEBOV-GP given on Day 56 transiently boosted antibody concentrations. In vaccinated children, GP-ELISA titers were superior to placebo and non-inferior to vaccinated adults. Vaccine virus shedding was observed in 31.7% of children, peaking by Day 7, with no shedding observed after Day 28 post-dose 1 or any time post-dose 2. CONCLUSIONS: A single dose of rVSVΔG-ZEBOV-GP induced robust antibody responses in children that was non-inferior to the responses induced in vaccinated adults. Vaccine virus shedding in children was time-limited and only observed after the first dose. Overall, these data support the use of rVSVΔG-ZEBOV-GP for the prevention of EVD in at-risk children. Clinical Trials Registration. The study is registered at ClinicalTrials.gov (NCT02876328), the Pan African Clinical Trials Registry (PACTR201712002760250), and the European Clinical Trials Register (EudraCT number: 2017-001798-18).


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Adulto , Niño , Humanos , Anticuerpos Antivirales , Proteínas del Envoltorio Viral , Vacunas Sintéticas , Vacunación/métodos , Vacunas Atenuadas , Inmunogenicidad Vacunal
16.
Emerg Infect Dis ; 30(4): 757-760, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526137

RESUMEN

Analyzing vaccine stability under different storage and transportation conditions is critical to ensure that effectiveness and safety are not affected by distribution. In a simulation of the last mile in the supply chain, we found that shock and vibration had no effect on Ad26.ZEBOV/MVA-BN-Filo Ebola vaccine regimen quality under refrigerated conditions.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Fiebre Hemorrágica Ebola/prevención & control , Vibración , Simulación por Computador , Anticuerpos Antivirales
17.
N Engl J Med ; 384(13): 1240-1247, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33789012

RESUMEN

During the 2018-2020 Ebola virus disease (EVD) outbreak in North Kivu province in the Democratic Republic of Congo, EVD was diagnosed in a patient who had received the recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) (Merck). His treatment included an Ebola virus (EBOV)-specific monoclonal antibody (mAb114), and he recovered within 14 days. However, 6 months later, he presented again with severe EVD-like illness and EBOV viremia, and he died. We initiated epidemiologic and genomic investigations that showed that the patient had had a relapse of acute EVD that led to a transmission chain resulting in 91 cases across six health zones over 4 months. (Funded by the Bill and Melinda Gates Foundation and others.).


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/transmisión , Adulto , Teorema de Bayes , República Democrática del Congo/epidemiología , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/aislamiento & purificación , Resultado Fatal , Genoma Viral , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/terapia , Humanos , Masculino , Mutación , Filogenia , ARN Viral/sangre , Recurrencia
18.
PLoS Pathog ; 18(6): e1010658, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35759511

RESUMEN

Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.


Asunto(s)
Infecciones por Henipavirus , Estomatitis Vesicular , Vacunas Virales , Animales , Modelos Animales de Enfermedad , Vacunas contra el Virus del Ébola , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/prevención & control , Infecciones por Henipavirus/prevención & control , Humanos , Ratones , Virus Nipah/genética , Vacunas Atenuadas/efectos adversos , Vacunas Sintéticas/efectos adversos , Estomatitis Vesicular/prevención & control , Vacunas Virales/efectos adversos
19.
MMWR Morb Mortal Wkly Rep ; 73(16): 360-364, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662631

RESUMEN

Ebola virus disease (Ebola) is a rare but severe illness in humans, with an average case fatality rate of approximately 50%. Two licensed vaccines are currently available against Orthoebolavirus zairense, the virus that causes Ebola: the 1-dose rVSVΔG-ZEBOV-GP (ERVEBO [Merck]) and the 2-dose regimen of Ad26.ZEBOV and MVA-BN-Filo (Zabdeno/Mvabea [Johnson & Johnson]). The Strategic Advisory Group of Experts on Immunization recommends the use of 1-dose ERVEBO during Ebola outbreaks, and in 2021, a global stockpile of ERVEBO was established to ensure equitable, timely, and targeted access to vaccine doses for future Ebola outbreaks. This report describes the use of Ebola vaccines and the role of the stockpile developed and managed by the International Coordinating Group (ICG) on Vaccine Provision during 2021-2023. A total of 145,690 doses have been shipped from the ICG stockpile since 2021. However, because outbreaks since 2021 have been limited and rapidly contained, most doses (139,120; 95%) shipped from the ICG stockpile have been repurposed for preventive vaccination of high-risk groups, compared with 6,570 (5%) used for outbreak response. Repurposing doses for preventive vaccination could be prioritized in the absence of Ebola outbreaks to prevent transmission and maximize the cost-efficiency and benefits of the stockpile.


Asunto(s)
Brotes de Enfermedades , Vacunas contra el Virus del Ébola , Salud Global , Fiebre Hemorrágica Ebola , Humanos , Vacunas contra el Virus del Ébola/administración & dosificación , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/epidemiología , Brotes de Enfermedades/prevención & control , Reserva Estratégica , Adulto , Niño , Adolescente
20.
Stat Med ; 43(3): 560-577, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38109707

RESUMEN

We focus on Bayesian inference for survival probabilities in a prime-boost vaccination regime in the development of an Ebola vaccine. We are interested in the heterologous prime-boost regimen (unmatched vaccine deliverys using the same antigen) due to its demonstrated durable immunity, well-tolerated safety profile, and suitability as a population vaccination strategy. Our research is motivated by the need to estimate the survival probability given the administered dosage. To do so, we establish two key relationships. Firstly, we model the connection between the designed dose concentration and the induced antibody count using a Bayesian response surface model. Secondly, we model the association between the antibody count and the probability of survival when experimental subjects are exposed to the Ebola virus in a controlled setting using a Bayesian probability of survival model. Finally, we employ a combination of the two models with dose concentration as the predictor of the survival probability for a future vaccinated population. We implement our two-level Bayesian model in Stan, and illustrate its use with simulated and real-world data. Performance of this model is evaluated via simulation. Our work offers a new application of drug synergy models to examine prime-boost vaccine efficacy, and does so using a hierarchical Bayesian framework that allows us to use dose concentration to predict survival probability.


Asunto(s)
Vacunas contra el Virus del Ébola , Fiebre Hemorrágica Ebola , Humanos , Inmunización Secundaria , Vacunas contra el Virus del Ébola/farmacología , Fiebre Hemorrágica Ebola/prevención & control , Teorema de Bayes , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA