Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928267

RESUMEN

The neuropeptide vasopressin is known for its regulation of osmotic balance in mammals. Arginine vasotocin (AVT) is a non-mammalian homolog of this neuropeptide that is present in fish. Limited information suggested that vasopressin and its homologs may also influence reproductive function. In the present study, we investigated the direct effect of AVT on spermatogenesis, using zebrafish as a model organism. Results demonstrate that AVT and its receptors (avpr1aa, avpr2aa, avpr1ab, avpr2ab, and avpr2l) are expressed in the zebrafish brain and testes. The direct action of AVT on spermatogenesis was investigated using an ex vivo culture of mature zebrafish testes for 7 days. Using histological, morphometric, and biochemical approaches, we observed direct actions of AVT on zebrafish testicular function. AVT treatment directly increased the number of spermatozoa in an androgen-dependent manner, while reducing mitotic cells and the proliferation activity of type B spermatogonia. The observed stimulatory action of AVT on spermiogenesis was blocked by flutamide, an androgen receptor antagonist. The present results support the novel hypothesis that AVT stimulates short-term androgen-dependent spermiogenesis. However, its prolonged presence may lead to diminished spermatogenesis by reducing the proliferation of spermatogonia B, resulting in a diminished turnover of spermatogonia, spermatids, and spermatozoa. The overall findings offer an insight into the physiological significance of vasopressin and its homologs in vertebrates as a contributing factor in the multifactorial regulation of male reproduction.


Asunto(s)
Receptores de Vasopresinas , Espermatogénesis , Testículo , Vasotocina , Pez Cebra , Animales , Pez Cebra/metabolismo , Masculino , Vasotocina/metabolismo , Vasotocina/farmacología , Testículo/metabolismo , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Espermatozoides/metabolismo , Proliferación Celular , Espermatogonias/metabolismo , Espermatogonias/citología
2.
Fish Physiol Biochem ; 50(3): 1065-1077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38367082

RESUMEN

The present study aims to investigate nutritional programming through early starvation in the European seabass (Dicentrarchus labrax). European seabass larvae were fasted at three different developmental periods for three durations from 60 to 65 dph (F1), 81 to 87 dph (F2), and 123 to 133 dph (F3). Immediate effects were investigated by studying gene expression of npy (neuropeptide Y) and avt (Arginine vasotocin) in the head, while potential long-term effects (i.e., programming) were evaluated on intermediary metabolism later in life (in juveniles). Our findings indicate a direct effect regarding gene expression in the head only for F1, with higher avt mRNA level in fasted larved compared to controls. The early starvation periods had no long-term effect on growth performance (body weight and body length). Regarding intermediary metabolism, we analyzed related key plasma metabolites which reflect the intermediary metabolism: no differences for glucose, triglycerides, and free fatty acids in the plasma were observed in juveniles irrespective of the three early starvation stimuli. As programming is mainly linked to molecular mechanisms, we then studied hepatic mRNA levels for 23 key actors of glucose, lipid, amino acid, and energy metabolism. For many of the metabolic genes, there was no impact of early starvation in juveniles, except for three genes involved in glucose metabolism (glut2-glucose transporter and pk-pyruvate kinase) and lipid metabolism (acly-ATP citrate lyase) which were higher in F2 compared to control. Together, these results highlight that starvation between 81 to 87 dph may have more long-term impact, suggesting the existence of a developmental window for programming by starvation. In conclusion, European seabass appeared to be resilient to early starvation during larvae stages without drastic impacts on intermediary metabolism later in life.


Asunto(s)
Lubina , Larva , Hígado , Inanición , Animales , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Lubina/genética , Hígado/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Inanición/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/genética , Vasotocina/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
3.
Gen Comp Endocrinol ; 343: 114355, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562701

RESUMEN

The neurohypophysial peptide arginine vasotocin (VT) and its mammalian ortholog, arginine vasopressin, function in physiological and behavioral events. These functions have been identified in neuroendocrinological studies using adult animals; however, there is little information on whether VT is associated with social behavior development in fish. Here, we examined social preference in medaka fish of various ages and investigated how VT expression changes during development. The 1-, 2-, 4-, and 8-week post-hatching (wph) larvae, juveniles, and 5-month-old adults were individually introduced to the grouped fish of each age group, and the social preference index (SPI) was compared among ages based on the time spent in the interaction zone near the grouped fish in a test tank. The SPI was significantly higher in the 4-wph larvae, 8-wph juveniles, and adult fish than in the 1- and 2-wph larvae. VT expression increased with age from 1 to 4 wph. Similarly, the expression was high in 4-wph, 8-wph, and adult fish. Furthermore, it was also found that the SPI and the VT expression decreased in the socially isolated larva during the 4 weeks after hatching compared to the levels in the grouped 4-wph larvae. These findings suggest that social preference develops with age and that conspecifics are necessary for social development in medaka larvae. Furthermore, our results suggest that VT is associated with the development of social preferences in medaka.


Asunto(s)
Oryzias , Vasotocina , Animales , Vasotocina/metabolismo , Oryzias/metabolismo , Cambio Social , Conducta Social , Mamíferos/metabolismo
4.
Gen Comp Endocrinol ; 333: 114211, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642230

RESUMEN

In the catfish Heteropneustes fossilis, three nonapeptide hormone genes were identified in the brain preoptic area (POA) and ovary: a pro-vasotocin (pro-vt) and two isotocin gene paralogs viz., a novel pro-ita and conventional pro-itb. In the present study, the regulatory role of catecholamines [CA: dopamine (DA), noradrenaline (NA), adrenaline (AD)] on the expression of these genes were investigated in vitro. DA (1, 10, and 100 ng/mL) inhibited significantly the mRNA expression in both the POA and ovary. NA upregulated the POA mRNA expression in a biphasic manner, the lower concentrations (1 ng and 10 ng) scaled up and the higher concentration (100 ng) scaled down the expression of pro-vt and pro-itb, while only the 1 ng NA scaled up the pro-ita expression. In the ovary, NA upregulated the mRNA expressions at all concentrations; the pro-vt expression was stimulated only at 10 and 100 ng. AD stimulated pro-vt and pro-ita expression in the POA at all concentrations but the pro-itb expression was inhibited at 1 and 10 ng, and stimulated at 100 ng concentrations. In the ovary, AD elicited varied effects; no significant change in pro-vt, a stimulation of pro-ita, and an inhibition of pro-itb at 1 ng, and stimulation of pro-itb at the 10 and 100 ng. The incubation of the POA and ovary with α-methylparatyrosine (MPT, 250 µg/mL, a tyrosine hydroxylase inhibitor) for 8 h downregulated the mRNA expression in the POA but unaltered the expression in the ovary. Pre-incubation with MPT for 4 h, followed by co-incubation with DA, NA or AD for 4 h elicited varied effects. In the POA, the co-incubations with the CAs rescued the inhibition due to MPT. The MPT + DA and MPT + AD treatments reduced the magnitude of the inhibition of pro-vt and pro-itb by MPT. But the pro-ita expression was modestly stimulated in the MPT + AD group. On the other hand, the MPT + NA treatment rescued the MPT effect and elicited 10-folds increase in the expression levels. In the ovary, the changes were: an inhibition in the MPT + DA group, no significant alteration in the MPT + NA group, and a mild stimulation in the MPT + AD group. The results suggest that CAs modulate brain and ovarian nonapeptide gene expression differentially, which is important in the neuroendocrine/endocrine integration of reproduction in the catfish.


Asunto(s)
Catecolaminas , Bagres , Animales , Femenino , Catecolaminas/farmacología , Catecolaminas/metabolismo , Ovario/metabolismo , Área Preóptica/metabolismo , Bagres/genética , Bagres/metabolismo , Norepinefrina/farmacología , Epinefrina/farmacología , Dopamina/metabolismo , Vasotocina/farmacología , Vasotocina/metabolismo , ARN Mensajero/metabolismo
5.
Horm Behav ; 140: 105109, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066329

RESUMEN

Across species, individuals within a population differ in their level of boldness in social encounters with conspecifics. This boldness phenotype is often stable across both time and social context (e.g., reproductive versus agonistic encounters). Various neural and hormonal mechanisms have been suggested as underlying these stable phenotypic differences, which are often also described as syndromes, personalities, and coping styles. Most studies examining the neuroendocrine mechanisms associated with boldness examine subjects after they have engaged in a social interaction, whereas baseline neural activity that may predispose behavioral variation is understudied. The present study tests the hypotheses that physical characteristics, steroid hormone levels, and baseline variation in Ile3-vasopressin (VP, a.k.a., Arg8-vasotocin) signaling predispose boldness during social encounters. Boldness in agonistic and reproductive contexts was extensively quantified in male green anole lizards (Anolis carolinensis), an established research organism for social behavior research that provides a crucial comparison group to investigations of birds and mammals. We found high stability of boldness across time, and between agonistic and reproductive contexts. Next, immunofluorescence was used to colocalize VP neurons with phosphorylated ribosomal protein S6 (pS6), a proxy marker of neural activity. Vasopressin-pS6 colocalization within the paraventricular and supraoptic nuclei of the hypothalamus was inversely correlated with boldness of aggressive behaviors, but not of reproductive behaviors. Our findings suggest that baseline vasopressin release, rather than solely context-dependent release, plays a role in predisposing individuals toward stable levels of displayed aggression toward conspecifics by inhibiting behavioral output in these contexts.


Asunto(s)
Lagartos , Agresión/fisiología , Animales , Humanos , Lagartos/fisiología , Masculino , Mamíferos/metabolismo , Conducta Social , Vasopresinas , Vasotocina/metabolismo
6.
Horm Behav ; 145: 105238, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35932752

RESUMEN

Early-life social experience can strongly affect adult behavior, yet the behavioral mechanisms underlying developmental trajectories are poorly understood. Here, we use the highly social cichlid, Burton's Mouthbrooder (Astatotilapia burtoni) to investigate juvenile social status and behavior, as well as the underlying neuroendocrine mechanisms. We placed juveniles in pairs or triads and found that they readily establish social status hierarchies, with some group structural variation depending on group size, as well as the relative body size of the group members. Next, we used intracerebroventricular injections to test the hypothesis that arginine vasopressin (AVP) regulates juvenile social behavior and status, similar to adult A. burtoni. While we found no direct behavioral effects of experimentally increasing (via vasotocin) or decreasing (via antagonist Manning Compound) AVP signaling, social interactions directed at the treated individual were significantly altered. This group-level effect of central AVP manipulation was also reflected in a significant shift in whole brain expression of genes involved in nonapeptide signaling (AVP, oxytocin, and oxytocin receptor) and the neuroendocrine stress axis (corticotropin-releasing factor (CRF), glucocorticoid receptors (GR) 1a and 1b). Further, social status was associated with the expression of genes involved in glucocorticoid signaling (GR1a, GR1b, GR2, mineralocorticoid receptor), social interactions with the dominant fish, and nonapeptide signaling activity (AVP, AVP receptor V1aR2, OTR). Together, our results considerably expand our understanding of the context-specific emergence of social dominance hierarchies in juveniles and demonstrate a role for nonapeptide and stress axis signaling in the regulation of social status and social group dynamics.


Asunto(s)
Cíclidos , Vasotocina , Animales , Arginina Vasopresina/metabolismo , Cíclidos/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Glucocorticoides/metabolismo , Oxitocina/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/metabolismo , Predominio Social , Vasopresinas/metabolismo , Vasotocina/metabolismo
7.
Med Sci Monit ; 27: e929743, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33731666

RESUMEN

BACKGROUND Premature labor is an important cause of infant death and long-term disability. This study aimed to explore the safety and effectiveness of combining the tocolytic agents atosiban and ritodrine to extend gestation. MATERIAL AND METHODS The study included 52 patients with late threatened abortion and threatened premature labor between 20°â¸7 and 336⸍7 weeks' gestation who were administrated continuous tocolytic agents for 48 h. Patients were divided into a research group receiving ritodrine combined with atosiban, owing to having no response to ritodrine alone (n=30), and a control group receiving ritodrine alone (n=22). The mean infusion rate and duration of tocolytic administration, gestation extension, pregnancy outcomes, and adverse effects were recorded. Routine blood tests, including C-reactive protein, and cultures for leukorrhea, candida, and mycoplasma were performed before and 1 week after treatment. RESULTS Patients receiving ritodrine with atosiban had a mean gestation extension of 42.53±31.70 days. The extension of gestation of the research group was statistically shorter than that of the control group (P<0.05). The fetal loss rate, newborn birth weight, and Apgar score at 1 min were similar between the 2 groups (all, P>0.05). The research group had a lower incidence of palpitations than the control group (P<0.05). CONCLUSIONS For patients with late threatened abortion or threatened premature labor not controlled with ritodrine alone, ritodrine combined with atosiban extends gestation and improves pregnancy outcomes. For patients with abnormal uterine contractions, routine testing for reproductive tract infection should be performed. When infection is present, anti-infective therapy should be administered.


Asunto(s)
Amenaza de Aborto/tratamiento farmacológico , Trabajo de Parto Prematuro/tratamiento farmacológico , Ritodrina/uso terapéutico , Vasotocina/análogos & derivados , Amenaza de Aborto/prevención & control , Adulto , Quimioterapia Combinada/métodos , Femenino , Edad Gestacional , Humanos , Recién Nacido , Trabajo de Parto Prematuro/prevención & control , Embarazo , Resultado del Embarazo , Ritodrina/metabolismo , Tocolíticos/efectos adversos , Tocolíticos/uso terapéutico , Vasotocina/metabolismo , Vasotocina/uso terapéutico
8.
Horm Behav ; 121: 104728, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32119880

RESUMEN

Fish present a wide variety of sex determination systems ranging from strict genetic control (genetic sex determination, GSD) to strict environmental control (environmental sex determination, ESD). Temperature is the most frequent environmental factor influencing sex determination. Nile tilapia (Oreochromis niloticus) is characterized by GSD with male heterogamety (XY/XX), which can be overridden by exposure to high masculinizing temperatures. Sex reversed Nile tilapia (XX males; neomales) have been described in the wild and seem undistinguishable from XY males, but little is known about their physiology. The consideration of climate change urges the need to understand the possible physiological and behavioral consequences of such a sex reversal. The present study compared XX females, XY males and XX neomales for testis maturation, circulating sex -steroid concentrations as well as the size and number of neurons expressing arginine-vasotocin [AVT] and gonadotropin releasing hormone [GnRH] which are involved in sociosexual pathways. The results revealed that temperature-induced sex reversal does not affect testis maturation nor circulating sex steroid concentrations. Neomales show dramatically fewer GnRH1-immunoreactive (-ir) neurons than males and females, despite the observed normal testis physiology. Neomales also present fewer AVT-ir neurons in the magnocellular preoptic area than females and bigger AVT-ir neurons in the parvocellular POA (pPOA) compared to both males and females. The absence of consequences of sex reversal on testis development and secretions despite the reduced numbers of GnRH1 neurons suggests the existence of compensatory mechanisms in the hypothalamic-pituitary-gonadal axis, while the larger pPOA AVT neurons might predict a more submissive behavior in neomales.


Asunto(s)
Encéfalo/metabolismo , Cíclidos/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Diferenciación Sexual/fisiología , Temperatura , Vasotocina/metabolismo , Animales , Cíclidos/metabolismo , Femenino , Regulación de la Expresión Génica , Hormonas Esteroides Gonadales/sangre , Masculino , Neuronas/metabolismo , Área Preóptica/metabolismo , Testículo/crecimiento & desarrollo
9.
Horm Behav ; 121: 104717, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32061617

RESUMEN

Parental care represents a suite of distinct behaviors performed by parents to maximize fitness. Dynamic shifts in parental care behaviors, such as between nest defense and direct provisioning of the offspring, are required in response to environmental variation. However, the neural mechanisms which mediate such behavioral shifts remain a mystery. The anemonefish, Amphiprion ocellaris, represents an experimentally valuable model in social neuroscience which is conducive to manipulating the environment while simultaneously measuring parental care. The goal of this study was to determine the extent to which arginine vasotocin (AVT) and isotocin (IT) signaling are necessary for males to shift between direct egg care and aggressive nest defense in the presence of intruders, Domino damselfish (Dascyllus trimaculatus). The IT receptor antagonist desGly-NH2-d(CH2)5[D-Tyr2,Thr4]OVT, significantly reduced direct egg care, while at the same time increased levels of aggressive nest defense relative to vehicle. Conversely, blockade of AVT using the antagonist d(CH2)5[Tyr(Me)2]AVP, reduced aggression and tended to increase egg care. Results demonstrate that male anemonefish alter their parental strategy in response to allospecific intruders, and that IT and AVT signaling oppositely regulate parental care displays of aggression versus egg care.


Asunto(s)
Agresión/fisiología , Comportamiento de Nidificación/fisiología , Oxitocina/análogos & derivados , Perciformes/fisiología , Vasotocina/fisiología , Agresión/efectos de los fármacos , Animales , Masculino , Comportamiento de Nidificación/efectos de los fármacos , Oxitocina/metabolismo , Oxitocina/fisiología , Receptores de Oxitocina/antagonistas & inhibidores , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Conducta Social , Territorialidad , Vasotocina/análogos & derivados , Vasotocina/antagonistas & inhibidores , Vasotocina/metabolismo
10.
Gen Comp Endocrinol ; 286: 113302, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31622604

RESUMEN

Recently, we proposed that corticotropin releasing hormone (CRH) neurons in the nucleus of hippocampal commissure (NHpC), located in the septum, function as a part of the traditional hypothalamic-pituitary-adrenal (HPA) axis in avian species. CRH and its receptor, CRHR1, are regulated differently in the NHpC compared to the paraventricular nucleus (PVN) following feed deprivation (FD). Therefore, we followed up our work by examining arginine vasotocin (AVT), the other major ACTH secretagogue, and its receptors, V1aR and V1bR, gene expression during FD stress in the NHpC, PVN, and ventral mediobasal hypothalamus/median eminence (MBHv/ME). The objectives were to 1) identify AVT perikarya, fibers and its two major receptors, V1aR and V1bR, in the NHpC, PVN, and MBHv/ME using immunohistochemistry, 2) determine the effect of stress on AVT, V1aR and V1bR mRNA expression in the same three brain structures, NHpC, PVN, and MBHv/ME; and, 3) ascertain the expression pattern of V1aR and V1bR mRNA in the anterior pituitary and measure plasma stress hormone, corticosterone (CORT), concentration following FD stress. Male chicks (Cobb 500), 14 days of age, were divided into six groups (10 birds/treatment) and subjected to different times of FD stress: (Control, 1 h, 2 h, 3 h, 4 h, and 8 h). For each bird, blood, brain, and anterior pituitary were sampled and frozen immediately. The NHpC, PVN, and MBHv/ME were micro-dissected for RT-PCR. Data were analyzed using one-way ANOVA followed by Tukey Kramer HSD test using a significance level of p < 0.05. Perikarya of AVT neurons were identified in the PVN but not in the NHpC nor MBHv/ME, and only V1aR-immunoreactivity (ir) was observed in the three structures, however, gene expression data for AVT and its two receptors were obtained in all structures. Both AVT and V1aR mRNA are expressed and increased significantly in the PVN following FD stress (p < 0.01). For the first time, V1bR mRNA was documented in the avian brain and specifically shown upregulated in the NHpC and PVN (p < 0.01) following stress. Additionally, delayed significant gene expression of AVT and its receptors in the PVN showed a positive feedback relationship responsible for maintaining CORT release. In contrast, a significant downregulation of AVT mRNA and upregulation of V1aR mRNA occurred in the NHpC (p < 0.01) during FD showing a negative feedback relationship between AVT and its receptors, V1aR and V1bR. Within the MBHv/ME and anterior pituitary, a gradual increase of AVT mRNA in PVN as well as MBHv/ME was associated with significant upregulation of V1bR (p < 0. 01) and downregulation of V1aR (p < 0.01) in both MBHv/ME and anterior pituitary indicating AVT regulates its receptors differentially to sustain CORT release and control overstimulation of the anterior pituitary during a stress response.


Asunto(s)
Sistema Hipotálamo-Hipofisario/metabolismo , Adenohipófisis/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Fisiológico/fisiología , Vasotocina/metabolismo , Enfermedad Aguda , Animales , Pollos , Masculino
11.
Fish Physiol Biochem ; 46(2): 641-652, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31834553

RESUMEN

On the wild spawning grounds, the round gobies Neogobius melanostomus are subjected to different social cues, such as sex-separation and high fish density. We designed an experiment to stimulate natural social stress when fish are separated from opposite sex individuals and exposed to close proximity of same-sex conspecifics. We examined the effects of different sex compositions on aggressiveness and brain concentrations of arginine vasotocin (AVT) and isotocin (IT), as AVT and IT are known to be involved in aggressive interactions during reproduction. The round gobies were kept in three experimental groups: same-sex groups broken down into male-only and female-only groups and mixed-sex groups. In this study, males and females from same-sex groups showed overt aggression and competition. Separation stress stimulated aggressive responses in both sexes, but the link between brain AVT and IT concentration and aggressive behavior was evident only in male-only group. In the male-only group, AVT and IT levels were the highest. This study shows that sex composition of the social environment can affect aggressive behavior as well as AVT and IT concentration in the whole brain of the round goby.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/metabolismo , Oxitocina/análogos & derivados , Perciformes/fisiología , Vasotocina/metabolismo , Agresión , Animales , Femenino , Masculino , Oxitocina/metabolismo , Reproducción , Medio Social , Estrés Psicológico
12.
Proc Biol Sci ; 286(1910): 20191626, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31506060

RESUMEN

Living in groups affords individuals many benefits, including the opportunity to reduce stress. In mammals, such 'social buffering' of stress is mediated by affiliative relationships and production of the neuropeptide oxytocin, but whether these mechanisms facilitate social buffering across vertebrates remains an open question. Therefore, we evaluated whether the social environment influenced the behavioural and physiological recovery from an acute stressor in a group-living cichlid, Neolamprologus pulcher. Individual fish that recovered with their social group displayed lower cortisol levels than individuals that recovered alone. This social buffering of the stress response was associated with a tendency towards lower transcript abundance of arginine vasotocin and isotocin in the preoptic area of the brain, suggesting reduced neural activation of the stress axis. Individuals that recovered with their social group quickly resumed normal behaviour but received fewer affiliative acts following the stressor. Further experiments revealed similar cortisol levels between individuals that recovered in visual contact with their own social group and those in visual contact with a novel but non-aggressive social group. Collectively, our results suggest that affiliation and familiarity per se do not mediate social buffering in this group-living cichlid, and the behavioural and physiological mechanisms responsible for social buffering may vary across vertebrates.


Asunto(s)
Cíclidos/fisiología , Conducta Social , Animales , Femenino , Masculino , Oxitocina/análogos & derivados , Oxitocina/metabolismo , Vasotocina/metabolismo
13.
Metab Eng ; 51: 99-109, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30144560

RESUMEN

Corynebacterium glutamicum was metabolically engineered for the production of glutaric acid, a C5 dicarboxylic acid that can be used as platform building block chemical for nylons and plasticizers. C. glutamicum gabT and gabD genes and Pseudomonas putida davT and davD genes encoding 5-aminovalerate transaminase and glutarate semialdehyde dehydrogenase, respectively, were examined in C. glutamicum for the construction of a glutaric acid biosynthesis pathway along with P. putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. The glutaric acid biosynthesis pathway constructed in recombinant C. glutamicum was engineered by examining strong synthetic promoters PH30 and PH36, C. glutamicum codon-optimized davTDBA genes, and modification of davB gene with an N-terminal His6-tag to improve the production of glutaric acid. It was found that use of N-terminal His6-tagged DavB was most suitable for the production of glutaric acid from glucose. Fed-batch fermentation using the final engineered C. glutamicum H30_GAHis strain, expressing davTDA genes along with davB fused with His6-tag at N-terminus could produce 24.5 g/L of glutaric acid with low accumulation of l-lysine (1.7 g/L), wherein 5-AVA accumulation was not observed during fermentation.


Asunto(s)
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Dicarboxílicos/metabolismo , Glutaratos/metabolismo , Ingeniería Metabólica/métodos , Codón , ADN Bacteriano/genética , Fermentación , Glucosa/metabolismo , Lisina/metabolismo , Plásmidos/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Vasotocina/análogos & derivados , Vasotocina/metabolismo
14.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R735-R750, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30916577

RESUMEN

The nonapeptide arginine vasotocin (AVT) regulates osmotic balance in teleost fishes, but its mechanisms of action are not fully understood. Recently, it was discovered that nonapeptide receptors in teleost fishes are differentiated into two V1a-type, several V2-type, and two isotocin (IT) receptors, but it remains unclear which receptors mediate AVT's effects on gill osmoregulation. Here, we examined the role of nonapeptide receptors in the gill of the euryhaline Amargosa pupfish (Cyprinodon nevadensis amargosae) during osmotic acclimation. Transcripts for the teleost V1a-type receptor v1a2 were upregulated over fourfold in gill 24 h after transferring pupfish from 7.5 ppt to seawater (35 ppt) or hypersaline (55 ppt) conditions and downregulated after transfer to freshwater (0.3 ppt). Gill transcripts for the nonapeptide degradation enzyme leucyl-cystinyl aminopeptidase (LNPEP) also increased in fish acclimating to 35 ppt. To test whether the effects of AVT on the gill might be mediated by a V1a-type receptor, we administered AVT or a V1-type receptor antagonist (Manning compound) intraperitoneally to pupfish before transfer to 0.4 ppt or 35 ppt. Pupfish transferred to 35 ppt exhibited elevated gill mRNA abundance for cystic fibrosis transmembrane conductance regulator (cftr), but that upregulation diminished under V1-receptor inhibition. AVT inhibited the increase in gill Na+/Cl- cotransporter 2 (ncc2) transcript abundance that occurs following transfer to hypoosmotic environments, whereas V1-type receptor antagonism increased ncc2 mRNAs even without a change in salinity. These findings indicate that AVT acts via a V1-type receptor to regulate gill Cl- transport by inhibiting Cl- uptake and facilitating Cl- secretion during seawater acclimation.


Asunto(s)
Proteínas de Peces/metabolismo , Branquias/metabolismo , Peces Killi/metabolismo , Osmorregulación , Receptores de Vasopresinas/metabolismo , Salinidad , Tolerancia a la Sal , Vasotocina/metabolismo , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Cistinil Aminopeptidasa/genética , Cistinil Aminopeptidasa/metabolismo , Femenino , Proteínas de Peces/genética , Peces Killi/genética , Masculino , Oxitocina/análogos & derivados , Oxitocina/metabolismo , Receptores de Vasopresinas/genética , Agua de Mar , Transducción de Señal , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Regulación hacia Arriba
15.
Zoolog Sci ; 36(3): 215-222, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31251490

RESUMEN

Anurans occupy a wide variety of habitats of diverse salinities, and their osmoregulatory ability is strongly regulated by hormones. In this study, we compared the adaptability and hormonal responses to osmotic stress between two kajika frogs, Buergeria japonica (B.j.) and B. buergeri, (B.b.), which inhabit coastal brackish waters (BW) in the Ryukyu Islands and freshwater (FW) in the Honshu, respectively. Both hematocrit and plasma Na+ concentration were significantly higher in B.j. than in B.b. when both were kept in FW. After transfer to one-third seawater (simulating the natural BW environment), which is slightly hypertonic to their body fluids, their body mass decreased and plasma Na concentration increased significantly in both species. After transfer, plasma Na+ concentration increased significantly in both species. We examined the gene expression of two major osmoregulatory hormones, arginine vasotocin (AVT) and atrial natriuretic peptide (ANP), after partial cloning of their cDNAs. ANP mRNA levels were more than 10-fold higher in B.j. than in B.b. in FW, but no significant difference was observed for AVT mRNA levels due to high variability, although the mean value of B.j. was twice that of B.b. Both AVT and ANP mRNA levels increased significantly after transfer to BW in B.b. but not in B.j., probably because of the high levels in FW. These results suggest that B.j. maintains high plasma Na+ concentration and anp gene expression to prepare for the future encounter of the high salinity. The unique preparatory mechanism may allow B.j. wide distribution in oceanic islands.


Asunto(s)
Anuros/fisiología , Ecosistema , Aguas Salinas/química , Tolerancia a la Sal/fisiología , Animales , Factor Natriurético Atrial/metabolismo , Clonación Molecular , Regulación de la Expresión Génica/efectos de los fármacos , Japón , Masculino , Osmorregulación/fisiología , ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cloruro de Sodio/farmacología , Vasotocina/metabolismo
16.
Gen Comp Endocrinol ; 281: 91-104, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31121165

RESUMEN

Two structurally related peptides, arginine vasotocin (AVT) and mesotocin (MT), are reported to regulate many physiological processes, such as anti-diuresis and oviposition in birds, and their actions are likely mediated by four AVT/MT receptors (AVPR1A, AVPR1B, MTR and AVPR2b), which are orthologous/paralogous to human AVPR1A, AVPR1B, OXTR and AVPR2 respectively. However, our knowledge regarding the functions of these avian AVT/MT receptors has been limited. Here, we examined the functionality and expression of these receptors in chickens and investigated the roles of AVT in the anterior pituitary. Our results showed that 1) AVPR1A, AVPR1B and AVPR2b could be preferentially activated by AVT, monitored by cell-based luciferase reporter assays and/or Western blot, indicating that they are AVT-specific receptors (AVPR1A; AVPR1B) or AVT-preferring receptor (AVPR2b) functionally coupled to intracellular calcium, MAPK/ERK and cAMP/PKA signaling pathways. In contrast, MTR could be activated by AVT and MT with similar potencies, indicating that MTR is a receptor common for both peptides; 2) Using qPCR, differential expression of the four receptors was found in chicken tissues including the oviduct and anterior pituitary. In particular, only AVPR1A is abundantly expressed in the uterus, suggesting its involvement in mediating AVT-induced oviposition. 3) In cultured chick pituitary cells, AVT could stimulate ACTH and PRL expression and secretion, an action likely mediated by AVPR1B and/or AVPR1A abundantly expressed in anterior pituitary. Collectively, our data helps to elucidate the roles of AVT/MT in birds, such as the 'oxytocic action' of AVT, which induces uterine muscle contraction during oviposition.


Asunto(s)
Oviposición/fisiología , Hipófisis/metabolismo , Prolactina/metabolismo , Receptores de la Hormona Hipofisaria/metabolismo , Receptores de Vasopresinas/metabolismo , Transducción de Señal , Vasotocina/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Pollos/metabolismo , Patos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Modelos Biológicos , Proopiomelanocortina/farmacología , Prolactina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Distribución Tisular , Vasotocina/química
17.
Horm Behav ; 106: 178-188, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30342012

RESUMEN

Animals have evolved flexible strategies that allow them to evaluate and respond to their social environment by integrating the salience of external stimuli with internal physiological cues into adaptive behavioral responses. A highly conserved social decision-making network (SDMN), consisting of interconnected social behavior and mesolimbic reward networks, has been proposed to underlie such adaptive behaviors across all vertebrates, although our understanding of this system in reptiles is very limited. Here we measure neural activation across the SDMN and associated regions in the male brown anole (Anolis sagrei), within both reproductive and agonistic contexts, by quantifying the expression density of the immediate early gene product Fos. We then relate this neural activity measure to social context, behavioral expression, and activation (as measured by colocalization with Fos) of different phenotypes of 'source' node neurons that produce neurotransmitters and neuropeptides known to modulate SDMN 'target' node activity. Our results demonstrate that measures of neural activation across the SDMN network are generally independent of specific behavioral output, although Fos induction in a few select nodes of the social behavior network component of the SDMN does vary with social environment and behavioral output. Under control conditions, the mesolimbic reward nodes of the SDMN actually correlate little with the social behavior nodes, but the interconnectivity of these SDMN components increases dramatically within a reproductive context. When relating behavioral output to specific source node activation profiles, we found that catecholaminergic activation is associated with the frequency and intensity of reproductive behavior output, as well as with aggression intensity. Finally, in terms of the effects of source node activation on SDMN activity, we found that Ile8-oxytocin (mesotocin) populations correlate positively, while Ile3-vasopressin (vasotocin), catecholamine, and serotonin populations correlate negatively with SDMN activity. Taken together, our findings present evidence for a highly dynamic SDMN in reptiles that is responsive to salient cues in a social context-dependent manner.


Asunto(s)
Agresión/fisiología , Toma de Decisiones/fisiología , Lagartos/fisiología , Neuronas/fisiología , Conducta Sexual Animal/fisiología , Conducta Social , Animales , Masculino , Red Nerviosa/fisiología , Neuronas/metabolismo , Reproducción/fisiología , Vasopresinas/metabolismo , Vasotocina/metabolismo
18.
Gen Comp Endocrinol ; 257: 177-183, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28065737

RESUMEN

Gilthead sea bream, Sparus aurata L., is an important fish species for the Mediterranean aquaculture and is considered a good model for studying the osmoregulatory process, due to its capacity to cope with great changes in environmental salinity (5-60‰). Our group studied the osmoregulatory role of different endocrine systems in this species, focusing on the vasotocinergic and isotocinergic systems over several years. For this purpose, the cDNAs coding for pro-vasotocin (pro-vt), pro-isotocin (pro-it), two arginine vasotocin (AVT) receptors (avtr v1a2- and v2-types) and one IT receptor (itr) were cloned. Acclimation to different environmental salinities induced a direct lineal relationship between plasma AVT levels and salinity, with no changes in plasma IT values. In addition, higher values in vasotocinergic, isotocinergic and stress pathways (pro-vt and pro-it gene expression, AVT and IT storage and plasma cortisol levels) in both hypo- and/or hyper-osmotic transfers, suggest an interaction between cortisol and AVT/IT pathways. Moreover, gene expression of specific receptors, as well as the use of different in vitro techniques, demonstrated an important osmoregulatory orchestration in different organs. In addition, individuals intraperitoneally injected with AVT and transferred to different environmental salinities enhanced plasma cortisol levels and/or gill Na+, K+-ATPase activity. These effects could be related to the energy repartitioning process occurring during osmotic adaptation of S. aurata to extreme environmental salinities, which could be mediated not only by plasma cortisol but also by AVT. Finally, our results indicated a very important role of the vasotocinergic and/or isotocinergic systems in both osmoregulatory and non-osmoregulatory organs.


Asunto(s)
Receptores de Vasopresinas/metabolismo , Dorada , Vasotocina/metabolismo , Animales , Osmorregulación
19.
PLoS Genet ; 11(2): e1005009, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25719383

RESUMEN

To increase individual male fitness, males of various species remain near a (potential) mating partner and repel their rivals (mate-guarding). Mate-guarding is assumed to be mediated by two different types of motivation: sexual motivation toward the opposite sex and competitive motivation toward the same sex. The genetic/molecular mechanisms underlying how mate presence affects male competitive motivation in a triadic relationship has remained largely unknown. Here we showed that male medaka fish prominently exhibit mate-guarding behavior. The presence of a female robustly triggers male-male competition for the female in a triadic relationship (2 males and 1 female). The male-male competition resulted in one male occupying a dominant position near the female while interfering with the other male's approach of the female. Paternity testing revealed that the dominant male had a significantly higher mating success rate than the other male in a triadic relationship. We next generated medaka mutants of arginine-vasotocin (avt) and its receptors (V1a1, V1a2) and revealed that two genes, avt and V1a2, are required for normal mate-guarding behavior. In addition, behavioral analysis of courtship behaviors in a dyadic relationship and aggressive behaviors within a male group revealed that avt mutant males displayed decreased sexual motivation but showed normal aggression. In contrast, heterozygote V1a2 mutant males displayed decreased aggression, but normal mate-guarding and courtship behavior. Thus, impaired mate-guarding in avt and V1a2 homozygote mutants may be due to the loss of sexual motivation toward the opposite sex, and not to the loss of competitive motivation toward rival males. The different behavioral phenotypes between avt, V1a2 heterozygote, and V1a2 homozygote mutants suggest that there are redundant systems to activate V1a2 and that endogenous ligands activating the receptor may differ according to the social context.


Asunto(s)
Oryzias/genética , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Vasotocina/genética , Agresión/fisiología , Animales , Copulación/fisiología , Femenino , Masculino , Matrimonio , Motivación/fisiología , Oryzias/fisiología , Vasotocina/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-29079226

RESUMEN

The influence of chronic stress, induced by food deprivation (FD) and/or high stocking density (HSD), was assessed on stress, vasotocinergic and isotocinergic pathways of the gilthead sea bream (Sparus aurata). Fish were randomly assigned to one of the following treatments: (1) fed at low stocking density (LSD-F; 5kg·m-3); (2) fed at high stocking density (HSD-F, 40kg·m-3); (3) food-deprived at LSD (LSD-FD); and (4) food-deprived at HSD (HSD-FD). After 21days, samples from plasma, liver, hypothalamus, pituitary and head-kidney were collected. Both stressors (FD and HSD) induced a chronic stress situation, as indicated by the elevated cortisol levels, the enhancement in corticotrophin releasing hormone (crh) expression and the down-regulation in corticotrophin releasing hormone binding protein (crhbp) expression. Changes in plasma and liver metabolites confirmed a metabolic adjustment to cope with energy demand imposed by stressors. Changes in avt and it gene expression, as well as in their specific receptors (avtrv1a, avtrv2 and itr) at central (hypothalamus and pituitary) and peripheral (liver and head-kidney) levels, showed that vasotocinergic and isotocinergic pathways are involved in physiological changes induced by FD or HSD, suggesting that different stressors are handled through different stress pathways in S. aurata.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Proteínas de Peces/metabolismo , Modelos Neurológicos , Oxitocina/análogos & derivados , Dorada/fisiología , Estrés Fisiológico , Vasotocina/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Restricción Calórica/efectos adversos , Aglomeración , Proteínas de Peces/sangre , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Riñón Cefálico/crecimiento & desarrollo , Riñón Cefálico/inervación , Riñón Cefálico/metabolismo , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Neuronas/metabolismo , Oxitocina/sangre , Oxitocina/metabolismo , Hipófisis/crecimiento & desarrollo , Hipófisis/inervación , Hipófisis/metabolismo , Distribución Aleatoria , Dorada/sangre , Dorada/crecimiento & desarrollo , Vasotocina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA