Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 74(1): 19-31.e7, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30878284

RESUMEN

Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3-/- mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Caspasas/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/metabolismo , Virosis/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Caspasa 2/genética , Caspasa 2/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Caspasas/genética , Femenino , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Masculino , Ratones Endogámicos C57BL , Nucleotidiltransferasas/genética , Virus Sendai/inmunología , Virus Sendai/patogenicidad , Transducción de Señal , Células THP-1 , Virus Vaccinia/inmunología , Virus Vaccinia/patogenicidad , Virosis/genética , Virosis/inmunología , Virosis/virología
2.
RNA Biol ; 17(3): 366-380, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31829086

RESUMEN

Quaking (QKI) is an RNA-binding protein (RBP) involved in multiple aspects of RNA metabolism and many biological processes. Despite a known immune function in regulating monocyte differentiation and inflammatory responses, the degree to which QKI regulates the host interferon (IFN) response remains poorly characterized. Here we show that QKI ablation enhances poly(I:C) and viral infection-induced IFNß transcription. Characterization of IFN-related signalling cascades reveals that QKI knockout results in higher levels of IRF3 phosphorylation. Interestingly, complementation with QKI-5 isoform alone is sufficient to rescue this phenotype and reduce IRF3 phosphorylation. Further analysis shows that MAVS, but not RIG-I or MDA5, is robustly upregulated in the absence of QKI, suggesting that QKI downregulates MAVS and thus represses the host IFN response. As expected, MAVS depletion reduces IFNß activation and knockout of MAVS in the QKI knockout cells completely abolishes IFNß induction. Consistently, ectopic expression of RIG-I activates stronger IFNß induction via MAVS-IRF3 pathway in the absence of QKI. Collectively, these findings demonstrate a novel role for QKI in negatively regulating host IFN response by reducing MAVS levels.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interacciones Huésped-Patógeno/fisiología , Interferón Tipo I/metabolismo , Proteínas de Unión al ARN/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Fosforilación , Poli I-C/genética , Poli I-C/metabolismo , Proteínas de Unión al ARN/genética , Infecciones por Respirovirus/metabolismo , Virus Sendai/patogenicidad
3.
Immunity ; 32(2): 279-89, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20171123

RESUMEN

Dendritic cell (DC) populations consist of multiple subsets that are essential orchestrators of the immune system. Technological limitations have so far prevented systems-wide accurate proteome comparison of rare cell populations in vivo. Here, we used high-resolution mass spectrometry-based proteomics, combined with label-free quantitation algorithms, to determine the proteome of mouse splenic conventional and plasmacytoid DC subsets to a depth of 5,780 and 6,664 proteins, respectively. We found mutually exclusive expression of pattern recognition pathways not previously known to be different among conventional DC subsets. Our experiments assigned key viral recognition functions to be exclusively expressed in CD4(+) and double-negative DCs. The CD8alpha(+) DCs largely lack the receptors required to sense certain viruses in the cytoplasm. By avoiding activation via cytoplasmic receptors, including retinoic acid-inducible gene I, CD8alpha(+) DCs likely gain a window of opportunity to process and present viral antigens before activation-induced shutdown of antigen presentation pathways occurs.


Asunto(s)
ARN Helicasas DEAD-box/biosíntesis , Células Dendríticas/metabolismo , Proteómica/métodos , Infecciones por Respirovirus/inmunología , Virus Sendai/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antígenos CD/biosíntesis , Antígenos CD/genética , Separación Celular , Células Cultivadas , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/inmunología , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Citometría de Flujo , Interacciones Huésped-Patógeno , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteómica/instrumentación , Virus Sendai/patogenicidad
4.
Immunity ; 33(6): 878-89, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21145761

RESUMEN

Viral infection activates transcription factors IRF3 and NF-κB, which collaborate to induce type I interferons (IFNs). Here, we identified glycogen synthase kinase 3ß (GSK3ß) as an important regulator for virus-triggered IRF3 and NF-κB activation, IFN-ß induction, and cellular antiviral response. Overexpression of GSK3ß potentiated virus-induced activation of IRF3 and transcription of the IFNB1 gene, whereas reduced expression or deletion of GSK3ß impaired virus-induced IRF3 and NF-κB activation, transcription of the IFNB1 gene, as well as cellular antiviral response. GSK3ß physically associated with the kinase TBK1 in a viral infection-dependent manner. GSK3ß promoted TBK1 self-association and autophosphorylation at Ser172, which is critical for virus-induced IRF3 activation and IFN-ß induction. The effect of GSK3ß on virus-induced signaling is independent of its kinase activity. Our findings suggest that GSK3ß plays important roles in virus-triggered IRF3 activation by promoting TBK1 activation and provide new insights to the molecular mechanisms of cellular antiviral response.


Asunto(s)
Células Epiteliales/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Interferón beta/biosíntesis , Infecciones por Respirovirus/metabolismo , Virus Sendai/inmunología , Células Epiteliales/inmunología , Células Epiteliales/patología , Células Epiteliales/virología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , FN-kappa B/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Infecciones por Respirovirus/genética , Infecciones por Respirovirus/inmunología , Virus Sendai/patogenicidad , Transducción de Señal , Activación Transcripcional/genética , Transgenes/genética
5.
Immunity ; 33(1): 96-105, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20637658

RESUMEN

Memory CD8(+) T cells in the lung airways provide protection from secondary respiratory virus challenge by limiting early viral replication. Here, we demonstrate that although airway-resident memory CD8(+) T cells were poorly cytolytic, memory CD8(+) T cells recruited to the airways early during a recall response showed markedly enhanced cytolytic ability. This enhanced lytic activity did not require cognate antigen stimulation, but rather was dependent on STAT1 transcription factor signaling through the interferon-alpha receptor (Ifnar1), resulting in the antigen-independent expression of granzyme B protein in both murine and human virus-specific T cells. Signaling through Ifnar1 was required for the enhanced lytic activity and control of early viral replication by memory CD8(+) T cells in the lung airways. These findings demonstrate that innate inflammatory signals act directly on memory T cells, enabling them to rapidly destroy infected host cells once they enter infected tissues.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Granzimas/biosíntesis , Virus de la Influenza A/fisiología , Interferón Tipo I/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Respirovirus/inmunología , Virus Sendai/fisiología , Animales , Antígenos Virales/inmunología , Trasplante de Médula Ósea , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Citotoxicidad Inmunológica , Granzimas/genética , Humanos , Inmunización Secundaria , Memoria Inmunológica , Virus de la Influenza A/patogenicidad , Interferón Tipo I/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Quimera por Radiación , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Mucosa Respiratoria/patología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT1/metabolismo , Virus Sendai/patogenicidad , Transducción de Señal , Replicación Viral
6.
Proteomics ; 17(5)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28067018

RESUMEN

Sendai virus (SeV) is an enveloped nonsegmented negative-strand RNA virus that belongs to the genus Respirovirus of the Paramyxoviridae family. As a model pathogen, SeV has been extensively studied to define the basic biochemical and molecular biologic properties of the paramyxoviruses. In addition, SeV-infected host cells were widely employed to uncover the mechanism of innate immune response. To identify proteins involved in the SeV infection process or the SeV-induced innate immune response process, system-wide evaluations of SeV-host interactions have been performed. cDNA microarray, siRNA screening and phosphoproteomic analysis suggested that multiple signaling pathways are involved in SeV infection process. Here, to study SeV-host interaction, a global quantitative proteomic analysis was performed on SeV-infected HEK 293T cells. A total of 4699 host proteins were quantified, with 742 proteins being differentially regulated. Bioinformatics analysis indicated that regulated proteins were mainly involved in "interferon type I (IFN-I) signaling pathway" and "defense response to virus," suggesting that these processes play roles in SeV infection. Further RNAi-based functional studies indicated that the regulated proteins, tripartite motif (TRIM24) and TRIM27, affect SeV-induced IFN-I production. Our data provided a comprehensive view of host cell response to SeV and identified host proteins involved in the SeV infection process or the SeV-induced innate immune response process.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Proteoma/análisis , Infecciones por Respirovirus/metabolismo , Virus Sendai/patogenicidad , Citoplasma/química , Citoplasma/metabolismo , Citoplasma/virología , Células HEK293/virología , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Reproducibilidad de los Resultados , Infecciones por Respirovirus/virología , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral
7.
J Biol Chem ; 290(7): 4528-36, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25556652

RESUMEN

CCL28 is a human chemokine constitutively expressed by epithelial cells in diverse mucosal tissues and is known to attract a variety of immune cell types including T-cell subsets and eosinophils. Elevated levels of CCL28 have been found in the airways of individuals with asthma, and previous studies have indicated that CCL28 plays a vital role in the acute development of post-viral asthma. Our study builds on this, demonstrating that CCL28 is also important in the chronic post-viral asthma phenotype. In the absence of a viral infection, we also demonstrate that CCL28 is both necessary and sufficient for induction of asthma pathology. Additionally, we present the first effort aimed at elucidating the structural features of CCL28. Chemokines are defined by a conserved tertiary structure composed of a three-stranded ß-sheet and a C-terminal α-helix constrained by two disulfide bonds. In addition to the four disulfide bond-forming cysteine residues that define the traditional chemokine fold, CCL28 possesses two additional cysteine residues that form a third disulfide bond. If all disulfide bonds are disrupted, recombinant human CCL28 is no longer able to drive mouse CD4+ T-cell chemotaxis or in vivo airway hyper-reactivity, indicating that the conserved chemokine fold is necessary for its biologic activity. Due to the intimate relationship between CCL28 and asthma pathology, it is clear that CCL28 presents a novel target for the development of alternative asthma therapeutics.


Asunto(s)
Asma/patología , Linfocitos T CD4-Positivos/patología , Quimiocinas CC/química , Quimiocinas CC/metabolismo , Células Epiteliales/patología , Infecciones por Respirovirus/patología , Secuencia de Aminoácidos , Animales , Asma/inmunología , Asma/metabolismo , Asma/virología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Quimiocinas CC/administración & dosificación , Quimiotaxis , Enfermedad Crónica , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Conformación Proteica , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/metabolismo , Infecciones por Respirovirus/virología , Virus Sendai/patogenicidad , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Subgrupos de Linfocitos T
8.
Biochem Biophys Res Commun ; 480(2): 187-193, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27743889

RESUMEN

LGP2 and MDA5 cooperate to detect viral RNA in the cytoplasm of Picornavirus-infected cells and activate innate immune responses. To further define regulatory components of RNA recognition by LGP2/MDA5, a yeast two-hybrid screen was used to identify LGP2-interacting proteins. The screening has identified the TAR-RNA binding protein (TRBP), which is known to be an essential factor for RNA interference (RNAi). Immuno-precipitation experiments demonstrated that TRBP interacted specifically with LGP2 but not with related RIG-I-like receptors, RIG-I or MDA5. siRNA knockdown experiments indicate that TRBP is important for Cardiovirus-triggered interferon responses, but TRBP is not involved in Sendai virus-triggered interferon response that is mediated mainly by RIG-I. To support functional interaction with LGP2, overexpressed TRBP increased Cardiovirus-triggered interferon promoter activity only when LGP2 and MDA5 are co-expressed but not MDA5 alone. Together, our findings illustrate a possible connection between an RNAi-regulatory factor and antiviral RNA recognition that is specifically required for a branch of the virus induced innate immune response.


Asunto(s)
Infecciones por Cardiovirus/metabolismo , Interacciones Huésped-Patógeno , Proteínas de Unión al ARN/metabolismo , Animales , Cardiovirus/patogenicidad , Infecciones por Cardiovirus/inmunología , Chlorocebus aethiops , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Células HEK293 , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Interferón beta/genética , Ratones , Regiones Promotoras Genéticas , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Receptores Inmunológicos , Virus Sendai/patogenicidad , Células Vero
9.
PLoS Pathog ; 9(11): e1003786, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278024

RESUMEN

Little is known about how the mode of respiratory virus transmission determines the dynamics of primary infection and protection from reinfection. Using non-invasive imaging of murine parainfluenza virus 1 (Sendai virus) in living mice, we determined the frequency, timing, dynamics, and virulence of primary infection after contact and airborne transmission, as well as the tropism and magnitude of reinfection after subsequent challenge. Contact transmission of Sendai virus was 100% efficient, phenotypically uniform, initiated and grew to robust levels in the upper respiratory tract (URT), later spread to the lungs, grew to a lower level in the lungs than the URT, and protected from reinfection completely in the URT yet only partially in the lungs. Airborne transmission through 7.6-cm and 15.2-cm separations between donor and recipient mice was 86%-100% efficient. The dynamics of primary infection after airborne transmission varied between individual mice and included the following categories: (a) non-productive transmission, (b) tracheal dominant, (c) tracheal initiated yet respiratory disseminated, and (d) nasopharyngeal initiated yet respiratory disseminated. Any previous exposure to Sendai virus infection protected from mortality and severe morbidity after lethal challenge. Furthermore, a higher level of primary infection in a given respiratory tissue (nasopharynx, trachea, or lungs) was inversely correlated with the level of reinfection in that same tissue. Overall, the mode of transmission determined the dynamics and tropism of primary infection, which in turn governed the level of seroconversion and protection from reinfection. These data are the first description of the dynamics of respiratory virus infection and protection from reinfection throughout the respiratory tracts of living animals after airborne transmission. This work provides a basis for understanding parainfluenza virus transmission and protective immunity and for developing novel vaccines and non-pharmaceutical interventions.


Asunto(s)
Sistema Respiratorio , Infecciones por Respirovirus , Virus Sendai , Tropismo Viral/inmunología , Animales , Masculino , Ratones , Sistema Respiratorio/inmunología , Sistema Respiratorio/patología , Sistema Respiratorio/virología , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/patología , Infecciones por Respirovirus/prevención & control , Infecciones por Respirovirus/transmisión , Virus Sendai/inmunología , Virus Sendai/metabolismo , Virus Sendai/patogenicidad
10.
J Virol ; 87(1): 16-24, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23077293

RESUMEN

Infection of cultured cells by paramyxoviruses causes cell death, mediated by a newly discovered apoptotic pathway activated by virus infection. The key proapoptotic protein in this pathway is interferon regulatory factor 3 (IRF-3), which upon activation by virus infection binds BAX, translocates it to mitochondria, and triggers apoptosis. When IRF-3-knockdown cells were infected with Sendai virus (SeV), persistent infection (PI) was established. The PI cells produced infectious SeV continuously and constitutively expressed many innate immune genes. Interferon signaling was blocked in these cells. The elevated levels of IRF-3-driven genes in the PI cells indicated that the amount of residual IRF-3 activated by endogenous SeV was high enough to drive the transcriptional effects of IRF-3 but too low to trigger its apoptotic activity. We confirmed this IRF-3 threshold idea by generating a tetracycline (Tet)-inducible cell line for IRF-3 expression, which enabled us to express various levels of IRF-3. PI could be established in the Tet-off cell line, and as expected, when doxycycline was withdrawn, the cells underwent apoptosis. Finally, we tested for PI establishment in 12 mouse embryo fibroblasts by natural selection. Eleven lines became persistently infected; although seven out of them had low IRF-3 levels, four did not. When one of the latter four was further analyzed, we observed that it expressed a very low level of caspase 3, the final executor protease of the apoptotic pathway. These results demonstrated that SeV PI can arise from infection of normal wild-type cells, but only if they can find a way to impair the IRF-3-dependent apoptotic pathway.


Asunto(s)
Apoptosis , Interacciones Huésped-Patógeno , Factor 3 Regulador del Interferón/metabolismo , Virus Sendai/patogenicidad , Animales , Línea Celular , Fibroblastos/virología , Humanos , Ratones , Replicación Viral
11.
J Virol ; 87(17): 9788-801, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824799

RESUMEN

Host cells activate innate immune signaling pathways to defend against invading pathogens. To survive within an infected host, viruses have evolved intricate strategies to counteract host immune responses. Herpesviruses, including herpes simplex virus type 1 (HSV-1), have large genomes and therefore have the capacity to encode numerous proteins that modulate host innate immune responses. Here we define the contribution of HSV-1 tegument protein VP16 in the inhibition of beta interferon (IFN-ß) production. VP16 was demonstrated to significantly inhibit Sendai virus (SeV)-induced IFN-ß production, and its transcriptional activation domain was not responsible for this inhibition activity. Additionally, VP16 blocked the activation of the NF-κB promoter induced by SeV or tumor necrosis factor alpha treatment and expression of NF-κB-dependent genes through interaction with p65. Coexpression analysis revealed that VP16 selectively blocked IFN regulatory factor 3 (IRF-3)-mediated but not IRF-7-mediated transactivation. VP16 was able to bind to IRF-3 but not IRF-7 in vivo, based on coimmunoprecipitation analysis, but it did not affect IRF-3 dimerization, nuclear translocation, or DNA binding activity. Rather, VP16 interacted with the CREB binding protein (CBP) coactivator and efficiently inhibited the formation of the transcriptional complexes IRF-3-CBP in the context of HSV-1 infection. These results illustrate that VP16 is able to block the production of IFN-ß by inhibiting NF-κB activation and interfering with IRF-3 to recruit its coactivator CBP, which may be important to the early events leading to HSV-1 infection.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Proteína Vmw65 de Virus del Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/biosíntesis , Factor de Transcripción ReIA/metabolismo , Animales , Chlorocebus aethiops , Células HEK293 , Células HeLa , Proteína Vmw65 de Virus del Herpes Simple/química , Proteína Vmw65 de Virus del Herpes Simple/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Factor 7 Regulador del Interferón/metabolismo , Interferón beta/genética , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Virus Sendai/inmunología , Virus Sendai/patogenicidad , Factor de Transcripción ReIA/antagonistas & inhibidores , Factor de Transcripción ReIA/genética , Activación Transcripcional , Células Vero
12.
J Virol ; 86(13): 7136-45, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22532687

RESUMEN

The V protein of Sendai virus (SeV) suppresses innate immunity, resulting in enhancement of viral growth in mouse lungs and viral pathogenicity. The innate immunity restricted by the V protein is induced through activation of interferon regulatory factor 3 (IRF3). The V protein has been shown to interact with melanoma differentiation-associated gene 5 (MDA5) and to inhibit beta interferon production. In the present study, we infected MDA5-knockout mice with V-deficient SeV and found that MDA5 was largely unrelated to the innate immunity that the V protein suppresses in vivo. We therefore investigated the target of the SeV V protein. We previously reported interaction of the V protein with IRF3. Here we extended the observation and showed that the V protein appeared to inhibit translocation of IRF3 into the nucleus. We also found that the V protein inhibited IRF3 activation when induced by a constitutive active form of IRF3. The V proteins of measles virus and Newcastle disease virus inhibited IRF3 transcriptional activation, as did the V protein of SeV, while the V proteins of mumps virus and Nipah virus did not, and inhibition by these proteins correlated with interaction of each V protein with IRF3. These results indicate that IRF3 is important as an alternative target of paramyxovirus V proteins.


Asunto(s)
Evasión Inmune , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Virus Sendai/patogenicidad , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Animales , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/inmunología , Factor 3 Regulador del Interferón/inmunología , Helicasa Inducida por Interferón IFIH1 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo , Virus Sendai/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Estructurales Virales/inmunología , Proteínas Estructurales Virales/metabolismo , Factores de Virulencia/deficiencia , Factores de Virulencia/inmunología
13.
J Virol ; 85(10): 5224-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21367892

RESUMEN

Sendai virus (SeV) infection causes apoptosis, which is manifested only late after infection; however, inhibition of phosphatidylinositol 3-kinase (PI3K) dramatically accelerates the process. We report here that rapid apoptosis uses the same mitochondrial apoptotic pathway as slow apoptosis. Cytoplasmic cytochrome c (cyt c) was released early in both cases, but the antiapoptotic protein XIAP prevented early activation of the caspases in cells with active PI3K. When the enzyme was inhibited, XIAP was degraded rapidly in infected cells, allowing cyt c to cause caspase activation and early apoptosis. Thus, SeV infection-mediated apoptosis is temporally regulated by the prevention of XIAP degradation by PI3K.


Asunto(s)
Apoptosis , Fosfatidilinositol 3-Quinasa/inmunología , Virus Sendai/inmunología , Virus Sendai/patogenicidad , Transducción de Señal , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Línea Celular , Humanos , Proteína Inhibidora de la Apoptosis Ligada a X/inmunología
14.
J Virol ; 84(2): 810-21, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19906935

RESUMEN

While the molecular basis of fusion (F) protein refolding during membrane fusion has been studied extensively in vitro, little is known about the biological significance of membrane fusion activity in parainfluenza virus replication and pathogenesis in vivo. Two recombinant Sendai viruses, F-L179V and F-K180Q, were generated that contain F protein mutations in the heptad repeat A region of the ectodomain, a region of the protein known to regulate F protein activation. In vitro, the F-L179V virus caused increased syncytium formation (cell-cell membrane fusion) yet had a rate of replication and levels of F protein expression and cleavage similar to wild-type virus. The F-K180Q virus had a reduced replication rate along with reduced levels of F protein expression, cleavage, and fusogenicity. In DBA/2 mice, the hyperfusogenic F-L179V virus induced greater morbidity and mortality than wild-type virus, while the attenuated F-K180Q virus was much less pathogenic. During the first week of infection, virus replication and inflammation in the lungs were similar for wild-type and F-L179V viruses. After approximately 1 week of infection, the clearance of F-L179V virus was delayed, and more extensive interstitial inflammation and necrosis were observed in the lungs, affecting entire lobes of the lungs and having significantly greater numbers of syncytial cell masses in alveolar spaces on day 10. On the other hand, the slower-growing F-K180Q virus caused much less extensive inflammation than wild-type virus, presumably due to its reduced replication rate, and did not cause observable syncytium formation in the lungs. Overall, the results show that residues in the heptad repeat A region of the F protein modulate the virulence of Sendai virus in mice by influencing both the spread and clearance of the virus and the extent and severity of inflammation. An understanding of how the F protein contributes to infection and inflammation in vivo may assist in the development of antiviral therapies against respiratory paramyxoviruses.


Asunto(s)
Regulación Viral de la Expresión Génica , Virus Sendai/patogenicidad , Proteínas Virales de Fusión/química , Animales , Línea Celular , Chlorocebus aethiops , Femenino , Pulmón/patología , Pulmón/virología , Fusión de Membrana/fisiología , Ratones , Ratones Endogámicos DBA , Mutación Puntual , Infecciones por Respirovirus/mortalidad , Infecciones por Respirovirus/fisiopatología , Infecciones por Respirovirus/virología , Virus Sendai/genética , Virus Sendai/metabolismo , Células Vero , Proteínas Virales de Fusión/metabolismo , Virulencia
15.
Virol J ; 8: 549, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22185352

RESUMEN

BACKGROUND: Human infants are frequently hospitalized due to infection with the paramyxovirus respiratory syncytial virus (RSV). However, very little is known about the neonatal response to paramyxoviral infection. Here, a neonatal model of paramyxoviral infection is developed using the mouse pathogen Sendai virus (SeV). RESULTS: Adult mice infected with SeV developed a predominantly neutrophilic inflammatory cell influx and a concomitant reduction in lung function, as determined by oxygen saturation. In contrast, neonates with SeV had significantly reduced inflammation and normal lung function. Surprisingly, infected neonates had similar viral loads as adult mice. A reduced neutrophil influx in the neonates may be due in part to reduced expression of both CXCL2 and intracellular adhesion molecule-1 (ICAM-1). Expression of IFN-γ and TNF-α increased in a dose-dependent manner in adult lungs, but neonates did not increase expression of either of these cytokines, even at the highest doses. Importantly, the expression of the RIG-I-like receptors (RLRs) was delayed in the neonatal mice, which might have contributed to their reduced inflammation and differential cytokine expression. CONCLUSIONS: Neonatal mice developed similar SeV titers and cleared the virus with similar efficiency despite developing a dramatically lower degree of pulmonary inflammation compared to adults. This suggests that inflammation in the lung may not be required to control viral replication. Future studies will be needed to determine any effect the reduced inflammation may have on the development of a protective memory response in neonates.


Asunto(s)
Envejecimiento/inmunología , Modelos Animales de Enfermedad , Inflamación/fisiopatología , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/fisiopatología , Virus Sendai/patogenicidad , Animales , Animales Recién Nacidos/inmunología , Peso Corporal , Humanos , Inmunidad Innata , Lactante , Inflamación/inmunología , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Pruebas de Función Respiratoria , Infecciones por Respirovirus/virología , Virus Sendai/inmunología , Virus Sendai/fisiología , Carga Viral
16.
Arch Virol ; 156(6): 995-1005, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21311919

RESUMEN

Cellular membrane cholesterol has been shown to support various membrane proteins. However, the role and function of membrane cholesterol in viral production are still unclear. Here, we investigated the effects of cholesterol depletion from the cell membrane on the production of hemagglutinating virus of Japan (HVJ; Sendai virus). Cholesterol depletion from LLC-MK2 cells by methyl-beta cyclodextrin treatment resulted in a marked increase in the production of both HVJ from the infected cells and virus-like particles from M-gene-transfected cells. The HVJ produced from cholesterol-depleted cells possessed a reduced amount of envelope cholesterol and showed a rather wide range of particle sizes and amount of envelope protein compared to HVJ produced from untreated cells. Direct depletion of envelope cholesterol from HVJ significantly impaired its infectivity, even without a change in envelope protein composition. These results suggest that membrane cholesterol plays important roles in regulating the production of infectious HVJ.


Asunto(s)
Membrana Celular/virología , Colesterol/fisiología , Microdominios de Membrana/química , Microdominios de Membrana/virología , Virus Sendai/crecimiento & desarrollo , beta-Ciclodextrinas/farmacología , Animales , Anticolesterolemiantes/farmacología , Western Blotting , Línea Celular , Membrana Celular/química , Colesterol/análisis , Electroforesis en Gel de Poliacrilamida , Macaca mulatta , Microdominios de Membrana/efectos de los fármacos , Microscopía Electrónica , Virus Sendai/metabolismo , Virus Sendai/patogenicidad
17.
Respir Res ; 11: 90, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20591166

RESUMEN

BACKGROUND: Viral bronchiolitis is the leading cause of hospitalization in young infants. It is associated with the development of childhood asthma and contributes to morbidity and mortality in the elderly. Currently no therapies effectively attenuate inflammation during the acute viral infection, or prevent the risk of post-viral asthma. We hypothesized that early treatment of a paramyxoviral bronchiolitis with azithromycin would attenuate acute and chronic airway inflammation. METHODS: Mice were inoculated with parainfluenza type 1, Sendai Virus (SeV), and treated daily with PBS or azithromycin for 7 days post-inoculation. On day 8 and 21 we assessed airway inflammation in lung tissue, and quantified immune cells and inflammatory mediators in bronchoalveolar lavage (BAL). RESULTS: Compared to treatment with PBS, azithromycin significantly attenuated post-viral weight loss. During the peak of acute inflammation (day 8), azithromycin decreased total leukocyte accumulation in the lung tissue and BAL, with the largest fold-reduction in BAL neutrophils. This decreased inflammation was independent of changes in viral load. Azithromycin significantly attenuated the concentration of BAL inflammatory mediators and enhanced resolution of chronic airway inflammation evident by decreased BAL inflammatory mediators on day 21. CONCLUSIONS: In this mouse model of paramyxoviral bronchiolitis, azithromycin attenuated acute and chronic airway inflammation. These findings demonstrate anti-inflammatory effects of azithromycin that are not related to anti-viral activity. Our findings support the rationale for future prospective randomized clinical trials that will evaluate the effects of macrolides on acute viral bronchiolitis and their long-term consequences.


Asunto(s)
Antiinflamatorios/farmacología , Azitromicina/farmacología , Bronquiolitis Viral/tratamiento farmacológico , Pulmón/efectos de los fármacos , Neumonía/prevención & control , Infecciones por Respirovirus/tratamiento farmacológico , Animales , Bronquiolitis Viral/inmunología , Bronquiolitis Viral/virología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Virus de la Parainfluenza 1 Humana/patogenicidad , Neumonía/inmunología , Neumonía/virología , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/virología , Virus Sendai/patogenicidad , Factores de Tiempo , Carga Viral , Pérdida de Peso/efectos de los fármacos
18.
Dis Model Mech ; 13(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32461220

RESUMEN

Mammalian organs consist of diverse, intermixed cell types that signal to each other via ligand-receptor interactions - an interactome - to ensure development, homeostasis and injury-repair. Dissecting such intercellular interactions is facilitated by rapidly growing single-cell RNA sequencing (scRNA-seq) data; however, existing computational methods are often not readily adaptable by bench scientists without advanced programming skills. Here, we describe a quantitative intuitive algorithm, coupled with an optimized experimental protocol, to construct and compare interactomes in control and Sendai virus-infected mouse lungs. A minimum of 90 cells per cell type compensates for the known gene dropout issue in scRNA-seq and achieves comparable sensitivity to bulk RNA sequencing. Cell lineage normalization after cell sorting allows cost-efficient representation of cell types of interest. A numeric representation of ligand-receptor interactions identifies, as outliers, known and potentially new interactions as well as changes upon viral infection. Our experimental and computational approaches can be generalized to other organs and human samples.


Asunto(s)
Perfilación de la Expresión Génica , Pulmón/virología , RNA-Seq , Infecciones por Respirovirus/virología , Virus Sendai/patogenicidad , Análisis de la Célula Individual , Transcriptoma , Animales , Comunicación Celular , Linaje de la Célula , Modelos Animales de Enfermedad , Femenino , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Infecciones por Respirovirus/genética , Infecciones por Respirovirus/metabolismo , Infecciones por Respirovirus/patología , Transducción de Señal
19.
Front Immunol ; 11: 1926, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983119

RESUMEN

Innate immunity is the first-line defense against antiviral or antimicrobial infection. RIG-I and MDA5, which mediate the recognition of pathogen-derived nucleic acids, are essential for production of type I interferons (IFN). Here, we identified mitochondrion depolarization inducer carbonyl cyanide 3-chlorophenylhydrazone (CCCP) inhibited the response and antiviral activity of type I IFN during viral infection. Furthermore, we found that the PTEN-induced putative kinase 1 (PINK1) and the E3 ubiquitin-protein ligase Parkin mediated mitophagy, thus negatively regulating the activation of RIG-I and MDA5. Parkin directly interacted with and catalyzed the K48-linked polyubiquitination and subsequent degradation of RIG-I and MDA5. Thus, we demonstrate that Parkin limits RLR-triggered innate immunity activation, suggesting Parkin as a potential therapeutic target for the control of viral infection.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1/metabolismo , Mitocondrias/inmunología , Receptores Inmunológicos/metabolismo , Virus Sendai/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Vesiculovirus/inmunología , Células A549 , Animales , Chlorocebus aethiops , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Hidrazonas/farmacología , Inmunidad Innata/efectos de los fármacos , Interferón Tipo I/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/virología , Mitofagia , Proteínas Quinasas/metabolismo , Células RAW 264.7 , Virus Sendai/genética , Virus Sendai/patogenicidad , Células THP-1 , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Desacopladores/farmacología , Células Vero , Vesiculovirus/genética , Vesiculovirus/patogenicidad
20.
FEBS J ; 287(17): 3672-3676, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32692465

RESUMEN

The novel coronavirus SARS-CoV-2 is the causative agent of the global coronavirus disease 2019 (COVID-19) outbreak. In addition to pneumonia, other COVID-19-associated symptoms have been reported, including loss of smell (anosmia). However, the connection between infection with coronavirus and anosmia remains enigmatic. It has been reported that defects in olfactory cilia lead to anosmia. In this Viewpoint, we summarize transmission electron microscopic studies of cilia in virus-infected cells. In the human nasal epithelium, coronavirus infects the ciliated cells and causes deciliation. Research has shown that viruses such as influenza and Sendai attach to the ciliary membrane. The Sendai virus enters cilia by fusing its viral membrane with the ciliary membrane. A recent study on SARS-CoV-2-human protein-protein interactions revealed that the viral nonstructural protein Nsp13 interacts with the centrosome components, providing a potential molecular link. The mucociliary escalator removes inhaled pathogenic particles and functions as the first line of protection mechanism against viral infection in the human airway. Thus, future investigation into the virus-cilium interface will help further the battle against COVID-19.


Asunto(s)
Anosmia/metabolismo , COVID-19/metabolismo , Centrosoma/virología , Cilios/virología , Mucosa Nasal/virología , SARS-CoV-2/patogenicidad , Proteínas no Estructurales Virales/metabolismo , Anosmia/complicaciones , Anosmia/fisiopatología , Anosmia/virología , COVID-19/complicaciones , COVID-19/fisiopatología , COVID-19/virología , Centrosoma/metabolismo , Centrosoma/ultraestructura , Cilios/metabolismo , Cilios/ultraestructura , Interacciones Huésped-Patógeno/genética , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/ultraestructura , Orthomyxoviridae/metabolismo , Orthomyxoviridae/patogenicidad , Unión Proteica , ARN Helicasas/genética , ARN Helicasas/metabolismo , SARS-CoV-2/metabolismo , Virus Sendai/metabolismo , Virus Sendai/patogenicidad , Índice de Severidad de la Enfermedad , Olfato/fisiología , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA