Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(9): 1877-1894.e27, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116470

RESUMEN

Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.


Asunto(s)
Virus de la Parotiditis , Infección Persistente , Humanos , Virus de la Parotiditis/fisiología , Nucleocápside , Fosfoproteínas/metabolismo , Replicación Viral
2.
J Med Virol ; 96(6): e29733, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874268

RESUMEN

Viruses in human semen may be sexually transmitted via free and cell-mediated viral infection. The potential effects of semen on the infection and sexual transmission of most viruses in semen remain largely unclear. The present study elucidated the inhibitory effects of human seminal plasma (SP) on Jurkat cell (JC)-mediated mumps virus (MuV) infection. We demonstrated that MuV efficiently infected JCs and that the JCs infected by MuV (JC-MuV) mediated MuV infection of HeLa cells. Remarkably, SP was highly cytotoxic to JCs and inhibited JC-MuV infection of HeLa cells. The cytotoxic factor possessed a molecular weight of less than 3 kDa, whereas that of the viricidal factor was over 100 kDa. The cooperation of cytotoxic and viricidal factors was required for the SP inhibition of JC-MuV infection, and prostatic fluid (PF) was responsible for both the cytotoxic and viricidal effects of SP. The cytotoxic effects we observed were resistant to the treatment of PF with boiling water, proteinase K, RNase A, and DNase I. Our results provide novel insights into the antiviral properties of SP, which may limit cell-mediated sexual viral transmission.


Asunto(s)
Virus de la Parotiditis , Semen , Humanos , Virus de la Parotiditis/fisiología , Semen/virología , Masculino , Células HeLa , Linfocitos/virología , Células Jurkat , Supervivencia Celular , Peso Molecular
3.
J Virol ; 96(19): e0072222, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36135364

RESUMEN

The nucleolus is the largest structure in the nucleus, and it plays roles in mediating cellular stress responses and regulating cell proliferation, as well as in ribosome biosynthesis. The nucleolus is composed of a variety of nucleolar factors that interact with each other in a complex manner to enable its function. Many viral proteins interact with nucleolar factors as well, affecting cellular morphology and function. Here, to investigate the association between mumps virus (MuV) infection and the nucleolus, we evaluated the necessity of nucleolar factors for MuV proliferation by performing a knockdown of these factors with small interfering (si)RNAs. Our results reveal that suppressing the expression of Treacle, which is required for ribosome biosynthesis, reduced the proliferative potential of MuV. Additionally, the one-step growth kinetics results indicate that Treacle knockdown did not affect the viral RNA and protein synthesis of MuV, but it did impair the production of infectious virus particles. Viral matrix protein (M) was considered a candidate Treacle interaction partner because it functions in the process of particle formation in the viral life cycle and is partially localized in the nucleolus. Our data confirm that MuV M can interact with Treacle and colocalize with it in the nucleolus. Furthermore, we found that viral infection induces relocalization of Treacle in the nucleus. Together, these findings suggest that interaction with Treacle in the nucleolus is important for the M protein to exert its functions late in the MuV life cycle. IMPORTANCE The nucleolus, which is the site of ribosome biosynthesis, is a target organelle for many viruses. It is increasingly evident that viruses can favor their own replication and multiplication by interacting with various nucleolar factors. In this study, we found that the nucleolar protein Treacle, known to function in the transcription and processing of pre-rRNA, is required for the efficient propagation of mumps virus (MuV). Specifically, our data indicate that Treacle is not involved in viral RNA or protein synthesis but is important in the processes leading to viral particle production in MuV infection. Additionally, we determined that MuV matrix protein (M), which functions mainly in viral particle assembly and budding, colocalized and interacted with Treacle. Furthermore, we found that Treacle is distributed throughout the nucleus in MuV-infected cells. Our research shows that the interaction between M and Treacle supports efficient viral growth in the late stage of MuV infection.


Asunto(s)
Virus de la Parotiditis , Proteínas Nucleares , Proteínas de la Matriz Viral , Nucléolo Celular/metabolismo , Humanos , Paperas , Virus de la Parotiditis/fisiología , Proteínas Nucleares/metabolismo , Fosfoproteínas , Precursores del ARN/metabolismo , ARN Viral/metabolismo , Proteínas de la Matriz Viral/metabolismo
4.
J Virol ; 93(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31118251

RESUMEN

Mumps virus (MuV) is an important aerosol-transmitted human pathogen causing epidemic parotitis, meningitis, encephalitis, and deafness. MuV preferentially uses a trisaccharide containing α2,3-linked sialic acid as a receptor. However, given the MuV tropism toward glandular tissues and the central nervous system, an additional glycan motif(s) may also serve as a receptor. Here, we performed a large-scale glycan array screen with MuV hemagglutinin-neuraminidase (MuV-HN) attachment proteins by using 600 types of glycans from The Consortium for Functional Glycomics Protein-Glycan Interaction Core in an effort to find new glycan receptor motif(s). According to the results of the glycan array, we successfully determined the crystal structures of MuV-HN proteins bound to newly identified glycan motifs, sialyl LewisX (SLeX) and the oligosaccharide portion of the GM2 ganglioside (GM2-glycan). Interestingly, the complex structures showed that SLeX and GM2-glycan share the same configuration with the reported trisaccharide motif, 3'-sialyllactose (3'-SL), at the binding site of MuV-HN, while SLeX and GM2-glycan have several unique interactions compared with those of 3'-SL. Thus, MuV-HN protein can allow an additional spatial modification in GM2-glycan and SLeX at the second and third carbohydrates from the nonreducing terminus of the core trisaccharide structure, respectively. Importantly, MuV entry was efficiently inhibited in the presence of 3'-SL, SLeX, or GM2-glycan derivatives, which indicates that these motifs can serve as MuV receptors. The α2,3-sialylated oligosaccharides, such as SLeX and 3'-sialyllactosamine, are broadly expressed in various tissues, and GM2 exists mainly in neural tissues and the adrenal gland. The distribution of these glycan motifs in human tissues/organs may have bearing on MuV tropism.IMPORTANCE Mumps virus (MuV) infection is characterized by parotid gland swelling and can cause pancreatitis, orchitis, meningitis, and encephalitis. MuV-related hearing loss is also a serious complication because it is usually irreversible. MuV outbreaks have been reported in many countries, even in high-vaccine-coverage areas. MuV has tropism toward glandular tissues and the central nervous system. To understand the unique MuV tropism, revealing the mechanism of receptor recognition by MuV is very important. Here, using a large-scale glycan array and X-ray crystallography, we show that MuV recognizes sialyl LewisX and GM2 ganglioside as receptors, in addition to a previously reported MuV receptor, a trisaccharide containing an α2,3-linked sialic acid. The flexible recognition of these glycan receptors by MuV may explain the unique tropism and pathogenesis of MuV. Structures will also provide a template for the development of effective entry inhibitors targeting the receptor-binding site of MuV.


Asunto(s)
Proteína HN/metabolismo , Antígenos del Grupo Sanguíneo de Lewis/metabolismo , Virus de la Parotiditis/fisiología , Receptores Virales/metabolismo , Ácidos Siálicos/metabolismo , Tropismo Viral , Acoplamiento Viral , Cristalografía por Rayos X , Proteína HN/química , Antígenos del Grupo Sanguíneo de Lewis/química , Análisis por Micromatrices , Unión Proteica , Conformación Proteica , Ácidos Siálicos/química
5.
Biologicals ; 67: 29-37, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32855039

RESUMEN

Leningrad-Zagreb strain of mumps vaccine virus was grown on two different cell substrates viz. MRC-5 cells and Vero cells besides its original cell substrate i.e. Chicken Embryo Cells. Homogeneous virus pools prepared from each set of experiments were then lyophilized as per standard in-house protocol. Critical Quality Attributes (CQAs) such as the titer of the bulk vaccine and potency and stability of the lyophilized vaccine were then estimated using the CCID50 method to understand the lyophilization losses and thermal losses respectively in the vaccine. Another CQA viz. the genetic homogeneity of the vaccine was also tested using the single base extension method for identifying the nucleotides present at the three known locations of single nucleotide polymorphism (SNP). Comparison of CQA results across different cell substrates indicated encouraging results for Vero cell grown L-Zagreb virus compared to the MRC-5 cells grown L-Zagreb mumps virus. Significant improvement in productivity was also observed in the dynamic culture conditions compared to the static culture conditions. Progressive work in this research area can lead to development of a cGMP manufacturing process for mumps vaccine with easy scale up potential in future.


Asunto(s)
Reactores Biológicos , Vacuna contra la Parotiditis/inmunología , Virus de la Parotiditis/inmunología , Paperas/inmunología , Animales , Línea Celular , Chlorocebus aethiops , Liofilización/métodos , Humanos , Paperas/prevención & control , Paperas/virología , Vacuna contra la Parotiditis/administración & dosificación , Vacuna contra la Parotiditis/normas , Virus de la Parotiditis/genética , Virus de la Parotiditis/fisiología , Control de Calidad , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/normas , Células Vero , Cultivo de Virus/instrumentación , Cultivo de Virus/métodos
6.
J Virol ; 92(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30068647

RESUMEN

J paramyxovirus (JPV) was first isolated from moribund mice with hemorrhagic lung lesions in Australia in 1972. It is a paramyxovirus classified under the newly proposed genus Jeilongvirus JPV has a genome of 18,954 nucleotides, consisting of eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. JPV causes little cytopathic effect (CPE) in tissue culture cells but severe disease in mice. The small hydrophobic (SH) protein is an integral membrane protein encoded by many paramyxoviruses, such as mumps virus (MuV) and respiratory syncytial virus (RSV). However, the function of SH has not been defined in a suitable animal model. In this work, the functions of SH of JPV, MuV, and RSV have been examined by generating recombinant JPV lacking the SH protein (rJPV-ΔSH) or replacing SH of JPV with MuV SH (rJPV-MuVSH) or RSV SH (rJPV-RSVSH). rJPV-ΔSH, rJPV-MuVSH, and rJPV-RSVSH were viable and had no growth defect in tissue culture cells. However, more tumor necrosis factor alpha (TNF-α) was produced during rJPV-ΔSH infection, confirming the role of SH in inhibiting TNF-α production. rJPV-ΔSH induced more apoptosis in tissue culture cells than rJPV, rJPV-MuVSH, and rJPV-RSVSH, suggesting that SH plays a role in blocking apoptosis. Furthermore, rJPV-ΔSH was attenuated in mice compared to rJPV, rJPV-MuVSH, and rJPV-RSVSH, indicating that the SH protein plays an essential role in virulence. The results indicate that the functions of MuV SH and RSV SH are similar to that of JPV SH even though they have no sequence homology.IMPORTANCE Paramyxoviruses are associated with many devastating diseases in animals and humans. J paramyxovirus (JPV) was isolated from moribund mice in Australia in 1972. Newly isolated viruses, such as Beilong virus (BeiPV) and Tailam virus (TlmPV), have genome structures similar to that of JPV. A new paramyxovirus genus, Jeilongvirus, which contains JPV, BeiPV, and TlmPV, has been proposed. Small hydrophobic (SH) protein is present in many paramyxoviruses. Our present study investigates the role of SH protein of JPV in pathogenesis in its natural host. Understanding the pathogenic mechanism of Jeilongvirus is important to control and prevent potential diseases that may emerge from this group of viruses.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Infecciones por Paramyxoviridae/patología , Paramyxoviridae/crecimiento & desarrollo , Proteínas Oncogénicas de Retroviridae/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factores de Virulencia/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Modelos Animales de Enfermedad , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Ratones , Viabilidad Microbiana , Virus de la Parotiditis/genética , Virus de la Parotiditis/fisiología , Infecciones por Paramyxoviridae/virología , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/fisiología , Proteínas Oncogénicas de Retroviridae/genética , Virulencia , Factores de Virulencia/genética
7.
J Virol ; 91(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28053100

RESUMEN

Paramyxoviral RNAs are synthesized by a viral RNA-dependent RNA polymerase (RdRp) consisting of the large (L) protein and its cofactor phosphoprotein (P protein). The L protein is a multifunctional protein that catalyzes RNA synthesis, mRNA capping, and mRNA polyadenylation. Growing evidence shows that the stability of several paramyxovirus L proteins is regulated by heat shock protein 90 (Hsp90). In this study, we demonstrated that Hsp90 activity was important for mumps virus (MuV) replication. The Hsp90 activity was required for L-protein stability and activity because an Hsp90-specific inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), destabilized the MuV L protein and suppressed viral RNA synthesis. However, once the L protein formed a mature polymerase complex with the P protein, Hsp90 activity was no longer required for the stability and activity of the L protein. When the Hsp90 activity was inhibited, the MuV L protein was degraded through the CHIP (C terminus of Hsp70-interacting protein)-mediated proteasomal pathway. High concentrations of 17-AAG showed strong cytotoxicity to certain cell types, but combined use of an Hsp70 inhibitor, VER155008, potentiated degradation of the L protein, allowing a sufficient reduction of 17-AAG concentration to block MuV replication with minimum cytotoxicity. Regulation of the L protein by Hsp90 and Hsp70 chaperones was also demonstrated for another paramyxovirus, the measles virus. Collectively, our data show that the Hsp90/Hsp70 chaperone machinery assists in the maturation of the paramyxovirus L protein and thereby in the formation of a mature RdRp complex and efficient viral replication.IMPORTANCE Heat shock protein 90 (Hsp90) is nearly universally required for viral protein homeostasis. Here, we report that Hsp90 activity is required for efficient propagation of mumps virus (MuV). Hsp90 functions in the maintenance of the catalytic subunit of viral polymerase, the large (L) protein, prior to formation of a mature polymerase complex with the polymerase cofactor of L, phosphoprotein. Hsp70 collaborates with Hsp90 to regulate biogenesis of the MuV L protein. The functions of these chaperones on the viral polymerase may be common among paramyxoviruses because the L protein of measles virus is also similarly regulated. Our data provide important insights into the molecular mechanisms of paramyxovirus polymerase maturation as well as a basis for the development of novel antiviral drugs.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Interacciones Huésped-Patógeno , Virus de la Parotiditis/fisiología , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral , Animales , Línea Celular , Chlorocebus aethiops , Células Epiteliales/virología , Humanos , Virus del Sarampión/fisiología , Estabilidad Proteica , Proteolisis
8.
Cancer Invest ; 36(2): 106-117, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29485292

RESUMEN

Oncolytic measles and mumps viruses (MeV, MuV) have a potential for anti-cancer treatment. We examined the anti-tumor activity of MeV, MuV, and MeV-MuV combination (MM) against human solid malignancies (HSM). MeV, MuV, and MM targeted and significantly killed various cancer cell lines of HSM but not normal cells. MM demonstrated a greater anti-tumor effect and prolonged survival in a human prostate cancer xenograft tumor model compared to MeV and MuV. MeV, MuV, and MM significantly induced the expression of immunogenic cell death markers and enhanced spleen-infiltrating immune cells. In conclusion, MM combination significantly improves the treatment of human solid malignancies.


Asunto(s)
Efecto Citopatogénico Viral , Virus del Sarampión/fisiología , Virus de la Parotiditis/fisiología , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Animales , Chlorocebus aethiops , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/patología , Neoplasias/virología , Células Tumorales Cultivadas , Células Vero , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Virol ; 90(7): 3650-60, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26792745

RESUMEN

UNLABELLED: Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE: Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein interactions which enable efficient packaging of encapsidated viral RNA genomes into budding virions. In this study, we have defined regions near the C-terminal ends of paramyxovirus nucleocapsid proteins that are important for matrix protein interaction and that are sufficient to direct a foreign protein into budding particles. These results advance our basic understanding of paramyxovirus genome packaging interactions and also have implications for the potential use of virus-like particles as protein delivery tools.


Asunto(s)
Secuencias de Aminoácidos , Virus de la Parotiditis/fisiología , Virus Nipah/fisiología , Proteínas de la Nucleocápside/metabolismo , Virus de la Parainfluenza 5/fisiología , Proteínas de la Matriz Viral/metabolismo , Ensamble de Virus , Línea Celular , Humanos , Luciferasas de Renilla/metabolismo , Virus de la Parotiditis/genética , Virus Nipah/genética , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Virus de la Parainfluenza 5/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas de la Matriz Viral/química , Virosomas/metabolismo , Liberación del Virus
10.
J Virol ; 90(3): 1588-98, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608325

RESUMEN

UNLABELLED: The viral RNA-dependent RNA polymerases (vRdRps) of nonsegmented, negative-sense viruses (NNSVs) consist of the enzymatic large protein (L) and the phosphoprotein (P). P is heavily phosphorylated, and its phosphorylation plays a critical role in viral RNA synthesis. Since NNSVs do not encode kinases, P is phosphorylated by host kinases. In this study, we investigate the roles that viral proteins play in the phosphorylation of mumps virus (MuV) P. We found that nucleoprotein (NP) enhances the phosphorylation of P. We have identified the serine/threonine kinase Polo-like kinase 1 (PLK1) as a host kinase that phosphorylates P and have found that phosphorylation of P by PLK1 is enhanced by NP. The PLK1 binding site in MuV P was mapped to residues 146 to 148 within the S(pS/T)P motif, and the phosphorylation site was identified as residues S292 and S294. IMPORTANCE: It has previously been shown that P acts as a chaperone for NP, which encapsidates viral genomic RNA to form the NP-RNA complex, the functional template for viral RNA synthesis. Thus, it is assumed that phosphorylation of P may regulate NP's ability to form the NP-RNA complex, thereby regulating viral RNA synthesis. Our work demonstrates that MuV NP affects phosphorylation of P, suggesting that NP can regulate viral RNA synthesis by regulating phosphorylation of P.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Interacciones Huésped-Patógeno , Virus de la Parotiditis/fisiología , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Virales/metabolismo , Animales , Sitios de Unión , Línea Celular , Humanos , Fosforilación , Mapeo de Interacción de Proteínas , Quinasa Tipo Polo 1
11.
J Virol ; 89(14): 7338-47, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25948749

RESUMEN

UNLABELLED: Mumps virus (MuV) is a paramyxovirus with a negative-sense nonsegmented RNA genome. The viral RNA genome is encapsidated by the nucleocapsid protein (NP) to form the ribonucleoprotein (RNP), which serves as a template for transcription and replication. In this study, we investigated the roles of phosphorylation sites of NP in MuV RNA synthesis. Using radioactive labeling, we first demonstrated that NP was phosphorylated in MuV-infected cells. Using both liquid chromatography-mass spectrometry (LC-MS) and in silico modeling, we identified nine putative phosphorylated residues within NP. We mutated these nine residues to alanine. Mutation of the serine residue at position 439 to alanine (S439A) was found to reduce the phosphorylation of NP in transfected cells by over 90%. The effects of these mutations on the MuV minigenome system were examined. The S439A mutant was found to have higher activity, four mutants had lower activity, and four mutants had similar activity compared to wild-type NP. MuV containing the S439A mutation had 90% reduced phosphorylation of NP and enhanced viral RNA synthesis and viral protein expression at early time points after infection, indicating that S439 is the major phosphorylation site of NP and its phosphorylation plays an important role in downregulating viral RNA synthesis. IMPORTANCE: Mumps virus (MuV), a paramyxovirus, is an important human pathogen that is reemerging in human populations. Nucleocapsid protein (NP) of MuV is essential for viral RNA synthesis. We have identified the major phosphorylation site of NP. We have found that phosphorylation of NP plays a critical role in regulating viral RNA synthesis. The work will lead to a better understanding of viral RNA synthesis and possible novel targets for antiviral drug development.


Asunto(s)
Virus de la Parotiditis/fisiología , Proteínas de la Nucleocápside/metabolismo , ARN Viral/biosíntesis , Transcripción Genética , Replicación Viral , Animales , Línea Celular , Cromatografía Liquida , Análisis Mutacional de ADN , Células Epiteliales/virología , Humanos , Espectrometría de Masas , Modelos Moleculares , Virus de la Parotiditis/genética , Mutagénesis Sitio-Dirigida , Fosforilación , Procesamiento Proteico-Postraduccional
12.
J Virol ; 89(23): 12026-34, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26378159

RESUMEN

UNLABELLED: Mumps virus (MuV) is an airborne virus that causes a systemic infection in patients. In vivo, the epithelium is a major replication site of MuV, and thus, the mode of MuV infection of epithelial cells is a subject of interest. Our data in the present study showed that MuV entered polarized epithelial cells via both the apical and basolateral surfaces, while progeny viruses were predominantly released from the apical surface. In polarized cells, intracellular transport of viral ribonucleoprotein (vRNP) complexes was dependent on Rab11-positive endosomes, and vRNP complexes were transported to the apical membrane. Expression of a dominant negative form of Rab11 (Rab11S25N) reduced the progeny virus release in polarized cells but not in nonpolarized cells. Although in this way these effects were correlated with cell polarity, Rab11S25N did not modulate the direction of virus release from the apical surface. Therefore, our data suggested that Rab11 is not a regulator of selective apical release of MuV, although it acts as an activator of virus release from polarized epithelial cells. In addition, our data and previous studies on Sendai virus, respiratory syncytial virus, and measles virus suggested that selective apical release from epithelial cells is used by many paramyxoviruses, even though they cause either a systemic infection or a local respiratory infection. IMPORTANCE: Mumps virus (MuV) is the etiological agent of mumps and causes a systemic infection. However, the precise mechanism by which MuV breaks through the epithelial barriers and achieves a systemic infection remains unclear. In the present study, we show that the entry of MuV is bipolar, while the release is predominantly from the apical surface in polarized epithelial cells. In addition, the release of progeny virus was facilitated by a Rab11-positive recycling endosome and microtubule network. Our data provide important insights into the mechanism of transmission and pathogenesis of MuV.


Asunto(s)
Endosomas/virología , Células Epiteliales/virología , Virus de la Parotiditis/fisiología , Liberación del Virus/fisiología , Proteínas de Unión al GTP rab/metabolismo , Animales , Chlorocebus aethiops , Perros , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Immunoblotting , Microscopía Fluorescente , Plásmidos/genética
13.
J Gen Virol ; 96(8): 2092-2098, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25953915

RESUMEN

Ferrets have become the model animal of choice for influenza pathology and transmission experiments as they are permissive and susceptible to human influenza A viruses. However, inoculation of ferrets with mumps virus (MuV) did not lead to successful infections. We evaluated the use of highly differentiated ferret tracheal epithelium cell cultures, FTE, for predicting the potential of ferrets to support respiratory viral infections. FTE cultures supported productive replication of human influenza A and B viruses but not of MuV, whereas analogous cells generated from human airways supported replication of all three viruses. We propose that in vitro strategies using these cultures might serve as a method of triaging viruses and potentially reducing the use of ferrets in viral studies.


Asunto(s)
Células Epiteliales/virología , Hurones , Virus de la Influenza B/fisiología , Gripe Humana/virología , Virus de la Parotiditis/fisiología , Tráquea/citología , Replicación Viral , Animales , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Hurones/virología , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/fisiología , Virus de la Influenza B/genética , Virus de la Influenza B/crecimiento & desarrollo , Paperas/virología , Virus de la Parotiditis/genética , Virus de la Parotiditis/crecimiento & desarrollo , Tráquea/virología , Cultivo de Virus
14.
J Virol ; 88(8): 4414-22, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24501400

RESUMEN

UNLABELLED: Mumps virus (MuV), a paramyxovirus containing a negative-sense nonsegmented RNA genome, is a human pathogen that causes an acute infection with symptoms ranging from parotitis to mild meningitis and severe encephalitis. Vaccination against mumps virus has been effective in reducing mumps cases. However, recently large outbreaks have occurred in vaccinated populations. There is no anti-MuV drug. Understanding replication of MuV may lead to novel antiviral strategies. MuV RNA-dependent RNA polymerase minimally consists of the phosphoprotein (P) and the large protein (L). The P protein is heavily phosphorylated. To investigate the roles of serine (S) and threonine (T) residues of P in viral RNA transcription and replication, P was subjected to mass spectrometry and mutational analysis. P, a 392-amino acid residue protein, has 64 S and T residues. We have found that mutating nine S/T residues significantly reduced and mutating residue T at 101 to A (T101A) significantly enhanced activity in a minigenome system. A recombinant virus containing the P-T101A mutation (rMuV-P-T101A) was recovered and analyzed. rMuV-P-T101A grew to higher titers and had increased protein expression at early time points. Together, these results suggest that phosphorylation of MuV-P-T101 plays a negative role in viral RNA synthesis. This is the first time that the P protein of a paramyxovirus has been systematically analyzed for S/T residues that are critical for viral RNA synthesis. IMPORTANCE: Mumps virus (MuV) is a reemerging paramyxovirus that caused large outbreaks in the United States, where vaccination coverage is very high. There is no anti-MuV drug. In this work, we have systematically analyzed roles of Ser/Thr residues of MuV P in viral RNA synthesis. We have identified S/T residues of P critical for MuV RNA synthesis and phosphorylation sites that are important for viral RNA synthesis. This work leads to a better understanding of viral RNA synthesis as well as to potential novel strategies to control mumps.


Asunto(s)
Regulación Viral de la Expresión Génica , Virus de la Parotiditis/fisiología , Paperas/virología , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Virus de la Parotiditis/química , Virus de la Parotiditis/genética , Fosfoproteínas/genética , ARN Viral/genética , ARN Viral/metabolismo , Treonina/genética , Treonina/metabolismo , Transcripción Genética , Proteínas Virales/genética
15.
Virus Genes ; 51(1): 12-24, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25962759

RESUMEN

As a member of the family paramyxoviridae, subfamily paramyxovirinae, the genome of mumps virus (MuV) is postulated to be polyhexameric in length in order to be able to replicate efficiently. While all natural MuV strains sequenced so far obey to this "rule of six," we describe here the isolation of recombinant MuVs that appeared to contain an additional U residue in the homopolymeric tract of the F gene-end signal, resulting in a genome length of 6n + 1. Sequencing of several plaque-purified viruses from these preparations did not reveal the existence of length-correcting mutations, suggesting that they are violators of the rule of six. Employing high-throughput sequencing technology, we provide evidence that the insertion of an additional U residue is mainly the result of the rescue system used that relies on T7 RNA polymerase. Limited in vitro and in vivo testing of the viruses did not reveal any significant impact of the longer genome on virus replication or virulence, suggesting that the rule of six is not a strict requirement for MuV replication.


Asunto(s)
Virus de la Parotiditis/fisiología , Mutagénesis Insercional , Proteínas Mutantes/metabolismo , Proteínas Virales de Fusión/metabolismo , Replicación Viral , Animales , Chlorocebus aethiops , Virus de la Parotiditis/genética , Virus de la Parotiditis/aislamiento & purificación , Proteínas Mutantes/genética , ARN Viral/genética , Análisis de Secuencia de ADN , Células Vero , Proteínas Virales de Fusión/genética , Ensayo de Placa Viral , Virulencia
16.
Epidemiol Mikrobiol Imunol ; 64(4): 242-9, 2015 Oct.
Artículo en Checo | MEDLINE | ID: mdl-26795229

RESUMEN

AIM: The mumps outbreak in the Plzen Region in 2011 was analysed retrospectively using the epidemiological, clinical, and laboratory data. Vaccine efficacy analysis was also conducted in various population groups. MATERIAL AND METHODS: The routine procedure and standard form were used by the epidemiologists to collect data on the age, sex, place of residence, presence in collectivities, date of disease onset, type of complications and date of their onset, hospital admission, vaccination, and results of laboratory analyses. Based on the records of general practitioners for children and adolescents, data on the vaccination of children born in the previous three years have been provided to the epidemic control departments every year by 30 June since 1989. To estimate the vaccination coverage rate, the numbers of single-dose or two-dose recipients are related to the number of children registered in a given year. The first year of vaccine recipients were children born in 1986 who were aged 25 in 2011. The data collected on the population of the Plzen Region were used for the primary analyses. To estimate the efficacy of the mumps vaccine, age and vaccine coverage cohort analysis was performed using the screening method. To analyse categories, the chi-square test with Yates correction was applied at a significance level of p = 0.05 % (EPIINFO version 6.04d). RESULTS: In 2011, 721 mumps cases were reported in the Plzen Region (incidence: 126.1 cases per 100 000 population). The average patient age was 19.4 years, with a median of 18 years (age range 1-77 years). Four hundred and seventeen (57.8%) patients were males. Biological specimens from 375 (52.0%) patients were investigated serologically in the virology laboratory and mumps were laboratory confirmed in 316 (43.8%) of them - in 222 patients, one blood specimen was analysed. The most afflicted area was the Klatovy district with the incidence of 449.3/100 000 population. The most affected age group were 15-19 year-olds with the incidence of 1008.2/100 000 population. Forty-two (5.8%) patients were diagnosed with complications and 68 (9.4%) patients were admitted to the hospital. No statistically significant difference was found in the incidence of complications between the vaccinated and non-vaccinated patients. The assessment of hospitalisation risk showed a statistically significant difference between the vaccinated and non-vaccinated persons in both the whole study cohort and subcohort of patients who received the mumps vaccine within the childhood immunization schedule (p = 0.000 and p = 0.004, respectively). The average age of the vaccinated patients was 16.1 years (median of 17) and that of the non-vaccinated patients was, 29.3 years (median of 27). At the six to ten-month interval, as laid down by the legislation, the second dose of the vaccine was only given to 83.6 % of the patients. The screening method showed a high efficacy of the vaccine in the age group 20-25 years (97.6% in two-dose recipients), declining to 29.6% in the most affected age group of 15-19 years. CONCLUSIONS: Mumps outbreak may has been a result of the accumulation of high numbers of susceptible individuals in the population. The most affected area was the Klatovy district where the last epidemic outbreak occurred 23 years ago. To make the favourable epidemiological situation with occasional local outbreaks continue, the high two-dose vaccine coverage rate needs to be maintained.


Asunto(s)
Paperas/epidemiología , Adolescente , Adulto , Niño , Preescolar , República Checa/epidemiología , Brotes de Enfermedades , Femenino , Hospitalización , Humanos , Incidencia , Lactante , Masculino , Paperas/inmunología , Paperas/prevención & control , Paperas/virología , Vacuna contra la Parotiditis/administración & dosificación , Vacuna contra la Parotiditis/inmunología , Virus de la Parotiditis/fisiología , Estudios Retrospectivos , Vacunación , Adulto Joven
17.
Scand J Immunol ; 79(1): 68-72, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24313836

RESUMEN

We measured levels of pro-inflammatory cytokines in the cerebrospinal fluid (CSF) of patients with mumps meningitis, enteroviral echovirus 30 meningitis and children without central nervous system infection to investigate whether these molecules were involved in the pathogenesis of viral meningitis. The CSF was obtained from 62 children suspected with meningitis. These patients were classified to the mumps meningitis (n = 19), echovirus 30 meningitis (n = 22) and non-meningitis (n = 21) groups. The concentrations of interleukin-1 (IL-1), interleukin-1 soluble receptor type 2 (IL-1R2), interleukin-8 (IL-8), human interferon gamma (IFN-γ) and human tumour necrosis factor alpha (TNF-α) were determined by immunoassay. A significant increase was noted in the levels of IL-8, TNF-α and IL-1R2 in the CSF of both meningitis groups as compared to controls. The concentrations of IFN-γ and IL-1 differed significantly only between the mumps group and control. The levels of IL-1, IFN-γ and TNF-α were significantly higher in mumps meningitis when compared to the echovirus 30 group. Of all cytokines examined, only IFN-γ correlated with pleocytosis (r = 0.58) in the mumps meningitis group. The increased CSF cytokine levels are markers of meningeal inflammation, and each virus may cause a specific profile of the cytokine pattern.


Asunto(s)
Citocinas/líquido cefalorraquídeo , Infecciones por Enterovirus/líquido cefalorraquídeo , Meningitis Aséptica/líquido cefalorraquídeo , Paperas/líquido cefalorraquídeo , Adolescente , Biomarcadores/líquido cefalorraquídeo , Niño , Preescolar , Enterovirus Humano B/fisiología , Infecciones por Enterovirus/virología , Femenino , Interacciones Huésped-Patógeno , Humanos , Inmunoensayo , Lactante , Interferón gamma/líquido cefalorraquídeo , Interleucina-1/líquido cefalorraquídeo , Interleucina-8/líquido cefalorraquídeo , Leucocitosis/líquido cefalorraquídeo , Leucocitosis/virología , Masculino , Meningitis Aséptica/virología , Paperas/virología , Virus de la Parotiditis/fisiología , Receptores Tipo II de Interleucina-1/metabolismo , Factor de Necrosis Tumoral alfa/líquido cefalorraquídeo
18.
J Gen Virol ; 94(Pt 6): 1200-1205, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23446758

RESUMEN

Humans are the sole reservoir for mumps virus (MuV), the causative agent of mumps. No animal model currently exists; therefore, in vivo knowledge of the virus is limited. Ferrets were assessed for their susceptibility to MuV based on their success as a model for influenza. We infected ferrets with clinical or attenuated vaccine MuVs by the nasal route and demonstrated evidence of immunogenicity in these animals with generation of a serum antibody response specific to MuV infection and cytokine production consistent with infection. However, no live virus or viral RNA was detected in nasal washes, oral swabs, urine, faeces or tissue homogenates, and no animals exhibited clinical signs. We suggest results to be obtained from ferrets are limited in fundamental in vivo MuV research and that they may not be a suitable animal model for this virus.


Asunto(s)
Modelos Animales de Enfermedad , Hurones , Virus de la Parotiditis/fisiología , Paperas/virología , Animales , Anticuerpos Antivirales/inmunología , Citocinas/inmunología , Humanos , Paperas/inmunología , Virus de la Parotiditis/inmunología
19.
J Virol ; 86(18): 9929-40, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22761385

RESUMEN

Enveloped viruses can incorporate host cell membrane proteins during the budding process. Here we demonstrate that mumps virus (MuV) and vesicular stomatitis virus (VSV) assemble to include CD46 and CD55, two host cell regulators which inhibit propagation of complement pathways through distinct mechanisms. Using viruses which incorporated CD46 alone, CD55 alone, or both CD46 and CD55, we have tested the relative contribution of these regulators in resistance to complement-mediated neutralization. Virion-associated CD46 and CD55 were biologically active, with VSV showing higher levels of activity of both cofactors, which promoted factor I-mediated cleavage of C3b into iC3b as well as decay-accelerating factor (DAF) activity against the C3 convertase, than MuV. Time courses of in vitro neutralization with normal human serum (NHS) showed that both regulators could delay neutralization, but viruses containing CD46 alone were neutralized faster and more completely than viruses containing CD55 alone. A dominant inhibitory role for CD55 was most evident for VSV, where virus containing CD55 alone was not substantially different in neutralization kinetics from virus harboring both regulators. Electron microscopy showed that VSV neutralization proceeded through virion aggregation followed by lysis, with virion-associated CD55 providing a delay in both aggregation and lysis more substantial than that conferred by CD46. Our results demonstrate the functional significance of incorporation of host cell factors during virion envelope assembly. They also define pathways of virus complement-mediated neutralization and suggest the design of more effective viral vectors.


Asunto(s)
Antígenos CD55/fisiología , Activación de Complemento/fisiología , Proteína Cofactora de Membrana/fisiología , Virus de la Parotiditis/inmunología , Vesiculovirus/inmunología , Animales , Antígenos CD55/genética , Células CHO , Activación de Complemento/genética , Cricetinae , Cricetulus , Interacciones Huésped-Patógeno/inmunología , Humanos , Proteína Cofactora de Membrana/genética , Microscopía Inmunoelectrónica , Virus de la Parotiditis/fisiología , Virus de la Parotiditis/ultraestructura , Pruebas de Neutralización , Vesiculovirus/fisiología , Vesiculovirus/ultraestructura , Ensamble de Virus
20.
Virol J ; 10: 337, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24225020

RESUMEN

BACKGROUND: Mumps virus (MuV) is a highly infectious paramyxovirus closely related to measles virus (MeV). Despite the availability of a mumps vaccine, outbreaks continue to occur and no treatment options are available. Vitamin A and other naturally occurring retinoids inhibit the replication of MeV in vitro. METHODS: Anti-viral effects of retinoids were observed in cell culture using the myelomonocytic U937, NB4/R4, and Huh7/7.5 cells. Observations of anti-viral effect were quantified using TCID50 analysis. Molecular properties of the antiviral effect were analysed using quantitative RT-PCR and western blot. RESULTS: The current work demonstrates that retinoids inhibit MuV in vitro due to up-regulation of type I interferon (IFN) and IFN stimulated genes. This effect is mediated by nuclear retinoid receptor signalling and RIG-I is required. The antiviral retinoid-induced state makes cells less permissive to viral replication from subsequent challenge with either MuV or MeV for less than 12 hours. CONCLUSIONS: These results demonstrate that retinoids inhibit MuV replication in uninfected bystander cells through a retinoid inducible gene I (RIG-I), retinoic acid receptor (RAR) and IFN dependent manner making them refractory to subsequent rounds of viral replication. These observations raise the possibility that pharmacological doses of retinoids might have clinical benefit in MuV infection.


Asunto(s)
Antivirales/farmacología , Virus de la Parotiditis/efectos de los fármacos , Retinoides/farmacología , Replicación Viral/efectos de los fármacos , Western Blotting , Línea Celular , Humanos , Pruebas de Sensibilidad Microbiana , Virus de la Parotiditis/fisiología , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Virales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA