RESUMEN
Ecdysone-induced protein 93 (E93), known as the 'adult-specifier' transcription factor in insects, triggers metamorphosis in both hemimetabolous and holometabolous insects. Although E93 is conserved in ametabolous insects, its spatiotemporal expression and physiological function remain poorly understood. In this study, we first discover that, in the ametabolous firebrat Thermobia domestica, the previtellogenic ovary exhibits cyclically high E93 expression, and E93 mRNA is broadly distributed in previtellogenic ovarioles. E93 homozygous mutant females of T. domestica exhibit severe fecundity deficiency due to impaired previtellogenic development of the ovarian follicles, likely because E93 induces the expression of genes involved in ECM (extracellular matrix)-receptor interactions during previtellogenesis. Moreover, we reveal that in the hemimetabolous cockroach Blattella germanica, E93 similarly promotes previtellogenic ovarian development. In addition, E93 is also essential for vitellogenesis that is necessary to guarantee ovarian maturation and promotes the vitellogenesis-previtellogenesis switch in the fat body of adult female cockroaches. Our findings deepen the understanding of the roles of E93 in controlling reproduction in insects, and of E93 expression and functional evolution, which are proposed to have made crucial contributions to the origin of insect metamorphosis.
Asunto(s)
Metamorfosis Biológica , Ovario , Reproducción , Animales , Femenino , Reproducción/genética , Metamorfosis Biológica/genética , Ovario/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vitelogénesis/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genéticaRESUMEN
Female mosquitoes produce eggs in gonadotrophic cycles that are divided between a previtellogenic and vitellogenic phase. Previtellogenic females consume water and sugar sources like nectar while also being attracted to hosts for blood feeding. Consumption of a blood meal activates the vitellogenic phase, which produces mature eggs and suppresses host attraction. In this study, we tested the hypothesis that neuropeptide Y-like hormones differentially modulate host attraction behavior in the mosquito Aedes aegypti. A series of experiments collectively indicated that enteroendocrine cells (EECs) in the posterior midgut produce and release neuropeptide F (NPF) into the hemolymph during the previtellogenic phase which stimulates attraction to humans and biting behavior. Consumption of a blood meal, which primarily consists of protein by dry weight, down-regulated NPF in EECs until mature eggs developed, which was associated with a decline in hemolymph titer. NPF depletion depended on protein digestion but was not associated with EEC loss. Other experiments showed that neurons in the terminal ganglion extend axons to the posterior midgut and produce RYamide, which showed evidence of increased secretion into circulation after a blood meal. Injection of RYamide-1 and -2 into previtellogenic females suppressed host attraction, while coinjection of RYamides with or without short NPF-2 also inhibited the host attraction activity of NPF. Overall, our results identify NPF and RYamide as gut-associated hormones in A. aegypti that link host attraction behavior to shifts in diet during sequential gonadotrophic cycles.
Asunto(s)
Aedes , Neuropéptidos , Animales , Aedes/metabolismo , Aedes/fisiología , Neuropéptidos/metabolismo , Femenino , Conducta Alimentaria/fisiología , Hemolinfa/metabolismo , Células Enteroendocrinas/metabolismo , Proteínas de Insectos/metabolismo , Humanos , Vitelogénesis/fisiologíaRESUMEN
Despite their medical and economic relevance, it remains largely unknown how suboptimal temperatures affect adult insect reproduction. Here, we report an in-depth analysis of how chronic adult exposure to suboptimal temperatures affects oogenesis using the model insect Drosophila melanogaster. In adult females maintained at 18°C (cold) or 29°C (warm), relative to females at the 25°C control temperature, egg production was reduced through distinct cellular mechanisms. Chronic 18°C exposure improved germline stem cell maintenance, survival of early germline cysts and oocyte quality, but reduced follicle growth with no obvious effect on vitellogenesis. By contrast, in females at 29°C, germline stem cell numbers and follicle growth were similar to those at 25°C, while early germline cyst death and degeneration of vitellogenic follicles were markedly increased and oocyte quality plummeted over time. Finally, we also show that these effects are largely independent of diet, male factors or canonical temperature sensors. These findings are relevant not only to cold-blooded organisms, which have limited thermoregulation, but also potentially to warm-blooded organisms, which are susceptible to hypothermia, heatstroke and fever.
Asunto(s)
Linaje de la Célula/fisiología , Drosophila melanogaster/fisiología , Células Germinativas/fisiología , Oogénesis/fisiología , Células Madre/fisiología , Animales , Frío , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Oocitos/fisiología , Folículo Ovárico/fisiología , Ovario/fisiología , Transducción de Señal/fisiología , Vitelogénesis/fisiologíaRESUMEN
The primary insect steroid hormone ecdysone requires a membrane transporter to enter its target cells. Although an organic anion-transporting polypeptide (OATP) named Ecdysone Importer (EcI) serves this role in the fruit fly Drosophila melanogaster and most likely in other arthropod species, this highly conserved transporter is apparently missing in mosquitoes. Here we report three additional OATPs that facilitate cellular incorporation of ecdysone in Drosophila and the yellow fever mosquito Aedes aegypti. These additional ecdysone importers (EcI-2, -3, and -4) are dispensable for development and reproduction in Drosophila, consistent with the predominant role of EcI. In contrast, in Aedes, EcI-2 is indispensable for ecdysone-mediated development, whereas EcI-4 is critical for vitellogenesis induced by ecdysone in adult females. Altogether, our results indicate unique and essential functions of these additional ecdysone importers in mosquito development and reproduction, making them attractive molecular targets for species- and stage-specific control of ecdysone signaling in mosquitoes.
Asunto(s)
Aedes , Ecdisona , Proteínas de Insectos , Transportadores de Anión Orgánico , Aedes/crecimiento & desarrollo , Aedes/fisiología , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Transportadores de Anión Orgánico/metabolismo , VitelogénesisRESUMEN
The Drosophila germ plasm is responsible for germ cell formation. Its assembly begins with localization of oskar mRNA to the posterior pole of the oocyte. The oskar translation produces 2 isoforms with distinct functions: short Oskar recruits germ plasm components, whereas long Oskar remodels actin to anchor the components to the cortex. The mechanism by which long Oskar anchors them remains elusive. Here, we report that Yolkless, which facilitates uptake of nutrient yolk proteins into the oocyte, is a key cofactor for long Oskar. Loss of Yolkless or depletion of yolk proteins disrupts the microtubule alignment and oskar mRNA localization at the posterior pole of the oocyte, whereas microtubule-dependent localization of bicoid mRNA to the anterior and gurken mRNA to the anterior-dorsal corner remains intact. Furthermore, these mutant oocytes do not properly respond to long Oskar, causing defects in the actin remodeling and germ plasm anchoring. Thus, the yolk uptake is not merely the process for nutrient incorporation, but also crucial for oskar mRNA localization and cortical anchorage of germ plasm components in the oocyte.
Asunto(s)
Proteínas de Drosophila , Proteínas del Huevo/metabolismo , Oocitos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico , Polaridad Celular/fisiología , Citoplasma/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Proteínas del Huevo/fisiología , Endocitosis/fisiología , Femenino , Oogénesis/fisiología , ARN Mensajero/metabolismo , Receptores de Superficie Celular/fisiología , Vitelogénesis/fisiología , Vitelogeninas/fisiologíaRESUMEN
Estrogen receptors (ERs) play a critical role in vitellogenesis (Vtgs). However, the contribution of each ER for the regulation of vtgs expression was not analyzed clearly in teleosts. In the present study, three ers isoforms (erα, erß1, and erß2) were cloned in pompano (Trachinotus ovatus). Real-time PCR and enzyme-linked immunosorbent assay (ELISA) was used to detect the effects of 17ß-estradiol (E2) on ERs and Vtgs in the liver of pompano. In vivo injection experiments showed that E2 significantly increased the expressions of ers and vtgs. ER broad spectrum antagonist Fulvestrant significantly attenuated the E2- induced up-regulation of ers and vtgs in a dose-dependent manner. ERα antagonist Methyl-piperidino pyrazole (MPP) significantly attenuated the up-regulation of erα, erß2, vtg-B and vtg-C, and promoted the expressions of erß1 and vtg-A. ERß antagonist Cyclofenil significantly inhibited the expressions of erß1, erß2, vtg-A and vtg-C, and promoted the expressions of erα and vtg-B. In addition, E2 significantly increased the protein level of Vtg, while Fulvestrant, MPP and Cyclofenil significantly inhibited the protein level of Vtg in a dose-dependent manner. Our results indicate that E2 may regulate the expression of each vtg with different subtypes of ERs, and shows a distinct compensatory expression effect on the regulation for ers and vtgs, which provides a theoretical basis for reproductive endocrinology study in pompano.
Asunto(s)
Receptor alfa de Estrógeno , Receptores de Estrógenos , Animales , Receptores de Estrógenos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Vitelogénesis , Fulvestrant , Ciclofenil , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Clonación Molecular , Peces/metabolismo , Estradiol/farmacologíaRESUMEN
In Dermanyssus gallinae, a hematophagous mite, the initiation of vitellogenesis induced by blood feeding is essential for its reproduction. However, the precise gene structures and physiological functions of Vg in D. gallinae and its upstream gene, Target of Rapamycin (TOR), have not been fully understood. This study revealed the presence of four homologous genes within D. gallinae, named Dg-Vg1, Dg-Vg1-like, Dg-Vg2, and Dg-Vg2-like, especially, Dg-Vg2-like was firstly identified in the mites. The expression levels of all these Vg genes were significantly higher in adult females than other stages. Following blood feeding, the expression levels of these genes increased significantly, followed by a subsequent decrease, aligning with egg production. Silencing Dg-Vgs by RNA interference (RNAi) led to decreased fecundity and egg hatching rates, as well as abnormal embryonic development, suggesting a vital role for Dg-Vgs in both egg formation and embryonic development. Furthermore, the knockdown of Dg-TOR significantly reduced the expression of Dg-Vgs and negatively impacted the reproductive capabilities of PRMs, indicating that TOR influences PRM reproduction by regulating the expression of Dg-Vgs. In summary, these findings demonstrated the crucial roles of Dg-Vgs and Dg-TOR in PRM reproduction, highlighting their potential as targets for pest control.
Asunto(s)
Ácaros , Interferencia de ARN , Reproducción , Serina-Treonina Quinasas TOR , Vitelogeninas , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Femenino , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Ácaros/genética , Ácaros/fisiología , Masculino , Secuencia de Aminoácidos , Filogenia , Fertilidad/genética , Ninfa/genética , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Vitelogénesis/genéticaRESUMEN
Repeated blood feedings are required for adult female mosquitoes to maintain their gonadotrophic cycles, enabling them to be important pathogen carriers of human diseases. Elucidating the molecular mechanism underlying developmental switches between these mosquito gonadotrophic cycles will provide valuable insight into mosquito reproduction and could aid in the identification of targets to disrupt these cycles, thereby reducing disease transmission. We report here that the transcription factor ecdysone-induced protein 93 (E93), previously implicated in insect metamorphic transitions, plays a key role in determining the gonadotrophic cyclicity in adult females of the major arboviral vector Aedes aegypti Expression of the E93 gene in mosquitoes is down-regulated by juvenile hormone (JH) and up-regulated by 20-hydroxyecdysone (20E). We find that E93 controls Hormone Receptor 3 (HR3), the transcription factor linked to the termination of reproductive cycles. Moreover, knockdown of E93 expression via RNAi impaired fat body autophagy, suggesting that E93 governs autophagy-induced termination of vitellogenesis. E93 RNAi silencing prior to the first gonadotrophic cycle affected normal progression of the second cycle. Finally, transcriptomic analysis showed a considerable E93-dependent decline in the expression of genes involved in translation and metabolism at the end of a reproductive cycle. In conclusion, our data demonstrate that E93 acts as a crucial factor in regulating reproductive cycle switches in adult female mosquitoes.
Asunto(s)
Aedes/metabolismo , Ecdisona/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Gonadotrofos/metabolismo , Proteínas de Insectos/metabolismo , Metamorfosis Biológica , Vitelogénesis , Aedes/genética , Aedes/crecimiento & desarrollo , Animales , Femenino , Proteínas de Insectos/genéticaRESUMEN
Vitellogenin receptor (VgR) plays a pivotal role in ovarian vitellogenin (Vg) uptake and vertical transmission of pathogenic microbes and Wolbachia symbionts. However, the regulatory mechanisms of VgR action as an endocytic receptor and translocation from oocyte cytoplasm to the membrane remain poorly understood. Here, by using the migratory locust Locusta migratoria as a model system, we report that juvenile hormone (JH) promotes VgR phosphorylation at Ser1361 in the second EGF-precursor homology domain. A signaling cascade including GPCR, PLC, extracellular calcium, and PKC-ι is involved in JH-stimulated VgR phosphorylation. This posttranslational regulation is a prerequisite for VgR binding to Vg on the external surface of the oocyte membrane and subsequent VgR/Vg endocytosis. Acidification, a condition in endosomes, induces VgR dephosphorylation along with the dissociation of Vg from VgR. Phosphorylation modification is also required for VgR recycling from oocyte cytoplasm to the membrane. Additionally, VgR phosphorylation and its requirement for Vg uptake and VgR recycling are evolutionarily conserved in other representative insects including the cockroach Periplaneta americana and the cotton bollworm Helicoverpa armigera This study fills an important knowledge gap of low-density lipoprotein receptors in posttranslational regulation, endocytosis, and intracellular recycling.
Asunto(s)
Proteínas del Huevo/metabolismo , Hormonas Juveniles/farmacología , Oocitos/fisiología , Receptores de Superficie Celular/metabolismo , Vitelogénesis , Vitelogeninas/metabolismo , Animales , Endocitosis , Femenino , Isoenzimas/metabolismo , Locusta migratoria , Oocitos/citología , Oocitos/efectos de los fármacos , Fosforilación , Proteína Quinasa C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fosfolipasas de Tipo C/metabolismoRESUMEN
It is well documented that the juvenile hormone (JH) can function as a gonadotropic hormone that stimulates vitellogenesis by activating the production and uptake of vitellogenin in insects. Here, we describe a phenotype associated with mutations in the Drosophila JH receptor genes, Met and Gce: the accumulation of mature eggs with reduced egg length in the ovary. JH signaling is mainly activated in ovarian muscle cells and induces laminin gene expression in these cells. Meanwhile, JH signaling induces collagen IV gene expression in the adult fat body, from which collagen IV is secreted and deposited onto the ovarian muscles. Laminin locally and collagen IV remotely contribute to the assembly of ovarian muscle extracellular matrix (ECM); moreover, the ECM components are indispensable for ovarian muscle contraction. Furthermore, ovarian muscle contraction externally generates a mechanical force to promote ovulation and maintain egg shape. This work reveals an important mechanism for JH-regulated insect reproduction.
Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Hormonas Juveniles/farmacología , Oocitos/citología , Oogénesis , Ovulación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Matriz Extracelular/efectos de los fármacos , Proteínas de la Matriz Extracelular/genética , Femenino , Laminina/genética , Laminina/metabolismo , Mutación , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Factores de Transcripción/genética , Vitelogénesis , Vitelogeninas/metabolismoRESUMEN
The link between the biological clock and reproduction is evident in most metazoans. The fruit fly Drosophila melanogaster, a key model organism in the field of chronobiology because of its well-defined networks of molecular clock genes and pacemaker neurons in the brain, shows a pronounced diurnal rhythmicity in oogenesis. Still, it is unclear how the circadian clock generates this reproductive rhythm. A subset of the group of neurons designated "posterior dorsal neuron 1" (DN1p), which are among the â¼150 pacemaker neurons in the fly brain, produces the neuropeptide allatostatin C (AstC-DN1p). Here, we report that six pairs of AstC-DN1p send inhibitory inputs to the brain insulin-producing cells, which express two AstC receptors, star1 and AICR2. Consistent with the roles of insulin/insulin-like signaling in oogenesis, activation of AstC-DN1p suppresses oogenesis through the insulin-producing cells. We show evidence that AstC-DN1p activity plays a role in generating an oogenesis rhythm by regulating juvenile hormone and vitellogenesis indirectly via insulin/insulin-like signaling. AstC is orthologous to the vertebrate neuropeptide somatostatin (SST). Like AstC, SST inhibits gonadotrophin secretion indirectly through gonadotropin-releasing hormone neurons in the hypothalamus. The functional and structural conservation linking the AstC and SST systems suggest an ancient origin for the neural substrates that generate reproductive rhythms.
Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neuronas/metabolismo , Oogénesis/genética , Animales , Encéfalo/citología , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Hormonas Juveniles/genética , Hormonas Juveniles/metabolismo , Masculino , Neuronas/citología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reproducción/genética , Transducción de Señal , Vitelogénesis/genéticaRESUMEN
The steroid 20-hydroxyecdysone (20E) is crucial in regulating ovarian development. However, the neuropeptidergic mechanisms underlying ovarian development via 20E are underexplored. In this study, we investigated myosuppressin (MS) signaling in the dominant fruit pest Grapholita molesta and revealed that MS signaling is necessary for 20E biosynthesis during ovarian maturation. Pharmacological and molecular docking analyses confirmed that the GmMS mature peptide could activate its receptor GmMSR. Additionally, transcript expression analyses of GmMS and GmMSR showed different distribution patterns in adults. Notably, GmMSR was also detected in the ovaries of sexually mature females. RNAi-mediated dysfunction of GmMS or GmMSR specifically decreased fertility in females. Furthermore, GmMS or GmMSR knockdown decreased vitellogenin synthesis and uptake, thereby delaying ovarian development. RNA-seq, gene expression validation, and hormone quantification further revealed that GmMS signaling depletion blocked 20E biosynthesis in the ovary. Finally, exogenous MS rescued most dsGmMS- or dsGmMSR-induced ovarian defects and 20E titers. These results suggest that MS/MSR-to-20E signaling regulates ovarian development through vitellogenesis, providing a new perspective on the development of neuroendocrine targets that suppress pest field populations.
Asunto(s)
Ecdisterona , Ovario , Transducción de Señal , Animales , Femenino , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Ecdisterona/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Hemípteros/metabolismo , Hemípteros/genética , Hemípteros/crecimiento & desarrollo , Vitelogeninas/metabolismo , Vitelogeninas/genética , VitelogénesisRESUMEN
To enhance our understanding of teleost reproductive physiology, we identified six Sichuan bream (Sinibrama taeniatus) vitellogenin genes (vtg1-6) and characterized their sequence structures. We categorized them into type â (vtg1,4,5 and 6), type â ¡ (vtg2) and type â ¢ (vtg3) based on differences in their subdomain structure. The promoter sequence of vtgs has multiple estrogen response elements, and their abundance appears to correlate with the responsiveness of vtg gene expression to estrogen. Gene expression analyses revealed that the vitellogenesis of Sichuan bream involves both heterosynthesis and autosynthesis pathways, with the dominant pathway originating from the liver. The drug treatment experiments revealed that 17ß-estradiol (E2) tightly regulated the level of vtg mRNA in the liver. Feeding fish with a diet containing 100 µg/g E2 for three weeks significantly induced vtg gene expression and ovarian development, leading to an earlier onset of vitellogenesis. Additionally, it was observed that the initiation of vtg transcription required E2 binding to its receptor, a process primarily mediated by estrogen receptor alpha in Sichuan bream. The findings of this study provide novel insights into the molecular information of the vitellogenin gene family in teleosts, thereby contributing to the regulation of gonadal development in farmed fish.
Asunto(s)
Estrógenos , Vitelogeninas , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Vitelogénesis/genética , Estradiol/farmacología , Estradiol/metabolismo , Regiones Promotoras Genéticas , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Filogenia , Regulación de la Expresión Génica/efectos de los fármacos , Familia de Multigenes , Hígado/metabolismo , Genoma , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismoRESUMEN
Vitellogenin (Vg) is a prerequisite for egg production and embryonic development after ovipositioning in oviparous animals. In many insects, juvenile hormone (JH) promotes fat body cell polyploidization for the massive Vg synthesis required for the maturation of multiple oocytes, but the underlying mechanisms remain poorly understood. Using the migratory locust Locusta migratoria as a model system, we report here that JH induces the dephosphorylation of Forkhead box O transcription factor (FoxO) through a signaling cascade including leucine carboxyl methyltransferase 1 (LCMT1) and protein phosphatase 2A (PP2A). JH promotes PP2A activity via LCMT1-mediated methylation, consequently triggering FoxO dephosphorylation. Dephosphorylated FoxO binds to the upstream region of two endocycle-related genes, cell-division-cycle 2 (Cdc2) and origin-recognition-complex subunit 5 (Orc5), and activates their transcription. Depletion of FoxO, Cdc2 or Orc5 results in blocked polyploidization of fat body cells, accompanied by markedly reduced Vg expression, impaired oocyte maturation and arrested ovarian development. The results suggest that JH acts via LCMT1-PP2A-FoxO to regulate Cdc2 and Orc5 expression, and to enhance ploidy of fat body cells in preparation for the large-scale Vg synthesis required for synchronous maturation of multiple eggs.
Asunto(s)
Saltamontes/genética , Proteínas de Insectos/genética , Hormonas Juveniles/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Vitelogénesis/genética , Animales , Cuerpo Adiposo/metabolismo , Femenino , Locusta migratoria/genética , Locusta migratoria/metabolismo , Oocitos/metabolismo , Poliploidía , Transducción de Señal/genética , Vitelogeninas/genéticaRESUMEN
Vitellogenesis, including vitellogenin (Vg) production in the fat body and Vg uptake by maturing oocytes, is of great importance for the successful reproduction of adult females. The endocrinal and nutritional regulation of vitellogenesis differs distinctly in insects. Here, the complex crosstalk between juvenile hormone (JH) and the two nutrient sensors insulin/IGF signaling (IIS) and target of rapamycin complex1 (TORC1), was investigated to elucidate the molecular mechanisms of vitellogenesis regulation in the American cockroach, Periplaneta americana Our data showed that a block of JH biosynthesis or JH action arrested vitellogenesis, in part by inhibiting the expression of doublesex (Dsx), a key transcription factor gene involved in the sex determination cascade. Depletion of IIS or TORC1 blocked both JH biosynthesis and vitellogenesis. Importantly, the JH analog methoprene, but not bovine insulin (to restore IIS) and amino acids (to restore TORC1 activity), restored vitellogenesis in the neck-ligated (IIS-, TORC1- and JH-deficient) and rapamycin-treated (TORC1- and JH-deficient) cockroaches. Combining classic physiology with modern molecular techniques, we have demonstrated that IIS and TORC1 promote vitellogenesis, mainly via inducing JH biosynthesis in the American cockroach.
Asunto(s)
Proteínas de Insectos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Hormonas Juveniles/biosíntesis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Periplaneta/metabolismo , Transducción de Señal , Vitelogénesis , Animales , Femenino , Metopreno/farmacología , Folículo Ovárico/metabolismo , Sirolimus/farmacología , Vitelogeninas/biosíntesisRESUMEN
The insulin superfamily comprises a group of peptides with diverse physiological functions and is conserved across the animal kingdom. Insulin-like peptides (ILPs) of crustaceans are classified into four major types: insulin, relaxin, gonadulin, and androgenic gland hormone (AGH)/insulin-like androgenic gland factor (IAG). Of these, the physiological functions of AGH/IAG have been clarified to be the regulation of male sex differentiation, but those of the other types have not been uncovered. In this study, we chemically synthesized Maj-ILP1, an ILP identified in the ovary of the kuruma prawn Marsupenaeus japonicus, using a combination of solid-phase peptide synthesis and regioselective disulfide bond formation reactions. As the circular dichroism spectral pattern of synthetic Maj-ILP1 is typical of other ILPs reported thus far, the synthetic peptide likely possessed the proper conformation. Functional analysis using ex vivo tissue incubation revealed that Maj-ILP1 significantly increased the expression of the yolk protein genes Maj-Vg1 and Maj-Vg2 in the hepatopancreas and Maj-Vg1 in the ovary of adolescent prawns. This is the first report on the synthesis of a crustacean ILP other than IAGs and also shows the positive relationship between the reproductive process and female-dominant ILP.
Asunto(s)
Insulina , Vitelogénesis , Animales , Femenino , Masculino , Insulina/química , Péptidos , AndrógenosRESUMEN
Methoprene-tolerant (Met) as an intracellular receptor of juvenile hormone (JH) and the Krüppel-homolog 1 (Kr-h1) as a JH-inducible transcription factor had been proved to contribute to insect reproduction. Their functions vary in different insect orders, however, they are not clear in Psocoptera. In this study, LeMet and LeKr-h1 were identified and their roles in vitellogenesis and ovarian development were investigated in Liposcelis entomophila (Enderlein). Treatment with exogenous JH III significantly induced the expression of LeKr-h1, LeVg, and LeVgR. Furthermore, silencing LeMet and LeKr-h1 remarkably reduced the transcription of LeVg and LeVgR, disrupted the production of Vg in fat body and the uptake of Vg by oocytes, and ultimately led to a decline in fecundity. The results indicated that the JH signaling pathway was essential to the reproductive process of this species. Interestingly, knockdown of LeMet or LeKr-h1 also resulted in fluctuations in the expression of FoxO, indicating the complex regulatory interactions between different hormone factors. Besides, knockdown of both LeMet and LeKr-h1 significantly increased L. entomophila mortality. Our study provides initial insight into the roles of JH signaling in the female reproduction of psocids and provided evidence that RNAi-mediated knockdown of Met or Kr-h1 is a potential pest control strategy.
Asunto(s)
Hormonas Juveniles , Metopreno , Femenino , Animales , Hormonas Juveniles/metabolismo , Metopreno/farmacología , Vitelogénesis , Factores de Transcripción/metabolismo , Interferencia de ARN , Neoptera/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismoRESUMEN
Marphysa madrasi is a commercially valuable maturation diet in crustacean aquaculture. This study presents the first detailed investigation of oogenesis in the intertidal polychaete worm M. madrasi and reports the steroid profile during oocyte growth and development. Oogenesis is extraovarian type I, originating from coelomic epithelial cells, with four stages of development - primary growth, early vitellogenic, late vitellogenic, and maturation. The primary growth phase contains oogonial cells and previtellogenic oocyte clusters in the early, mid, and late stages of development form a dispersed ovary attached to blood vessels. The late previtellogenic oocytes detach from the ovary at the onset of vitellogenesis. The detached oocytes complete vitellogenesis and final maturation in the coelomic fluid as solitary free-floating cells without any connection with follicle cells. The worms display asynchronous reproduction with a heterogeneous population of developing oocytes. Steroid extracts from the polychaete homogenates in different stages of oogenesis were identified by HPLC and confirmed by LC-MS/MS. In M. madrasi, two vertebrate-type steroids, pregnenolone (P5) and 17α-hydroxyprogesterone (17-OHP) were detected and quantified. The P5 levels were low in immature worms but increased significantly byâ¯â¼â¯8.3-fold in the previtellogenic stage and peaked during oocyte maturation. 17-OHP levels were low in immature worms but gradually increase as the oogenesis progress to the primary growth and early vitellogenic phase, with a significant increase (pâ¯<â¯0.001) during the late vitellogenic phase. Although an increase in the concentration of P5 and 17-OHP during vitellogenesis and maturation of oocytes points to a possible role in reproduction, the absence of other vertebrate-type steroids in the investigated polychaete signifies a plausible uptake of P5 and 17-OHP from the environment.
Asunto(s)
Poliquetos , Animales , Femenino , Cromatografía Liquida , Espectrometría de Masas en Tándem , Oogénesis , Vitelogénesis , Oocitos , Hormonas Esteroides Gonadales , EsteroidesRESUMEN
The Dpp signaling, as one of the branches within the TGF-ß superfamily, plays a crucial role in regulating various biological processes in insects. However, its impact on female reproduction through vitellogenesis remains unclear. In this study, the expression profiles implied that the Dpp signaling genes, including Dpp, Punt, Mad, and Medea, were up-regulated during reproductive development in the ovary of Colaphellus bowringi. Knockdown of these five Dpp signaling genes revealed significant effects of Dpp, Tkv, Mad, and Medea on ovarian development through vitellogenesis in the fat body. Our finding further indicated that Dpp signaling influences the expression of 20-hydroxyecdysone (20E) receptor and responsive genes in the fat body. Additionally, knockdown of 20E receptor EcR resulted in similar phenotypes as observed in the Dpp pathway genes knockdown, implying a regulatory role for Dpp signaling via EcR in vitellogenesis. Furthermore, knocking down Dpp, Tkv, and EcR in female adults led to a reduction in total dry weight and protein content, as well as the expression of mTOR, a factor linked to protein intake. These results suggest that the Dpp signaling pathway modulates vitellogenesis by impacting the AA/TOR-mediated 20E pathway in the fat body, providing novel insights into the network governing insect reproduction and offering potential targets for controlling female pest reproduction.
Asunto(s)
Brassica , Escarabajos , Animales , Femenino , Escarabajos/genética , Escarabajos/metabolismo , Ecdisterona/metabolismo , Brassica/metabolismo , Vitelogénesis , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Insectos/metabolismoRESUMEN
Methyl farnesoate (MF), a crucial sesquiterpenoid hormone, plays a pivotal role in the reproduction of female crustaceans, particularly in the vitellogenesis process. Despite extensive research on its functions, the molecular mechanisms that regulate MF levels during the vitellogenic phase remain largely elusive. This study investigates the roles of microRNAs (miRNAs), significant post-transcriptional regulators of gene expression, in controlling MF levels in the swimming crab Portunus trituberculatus. Through bioinformatic analysis, four miRNAs were identified as potential regulators targeting two genes encoding Carboxylesterases (CXEs), which are key enzymes in MF degradation. Dual luciferase reporter assays revealed that let-7b and miR-141 suppress CXE1 and CXE2 expression by directly binding to their 3' UTRs. In vivo overexpression of let-7b and miR-141 significantly diminished CXE1 and CXE2 levels, consequently elevating hemolymph MF and enhancing vitellogenin expression. Spatiotemporal expression profile analysis showed that these two miRNAs and their targets exhibited generally opposite patterns during ovarian development. These findings demonstrate that let-7b and miR-141 collaboratively modulate MF levels by targeting CXEs, thus influencing vitellogenesis in P. trituberculatus. Additionally, we found that the expression of let-7b and miR-141 were suppressed by MF, constituting a regulatory loop for the regulation of MF levels. The findings contribute novel insights into miRNA-mediated ovarian development regulation in crustaceans and offer valuable information for developing innovative reproduction manipulation techniques for P. trituberculatus.