Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 43(9): 1822-1842, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565947

RESUMEN

A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , División Celular , Regulación de la Expresión Génica de las Plantas , MicroARNs , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , División Celular/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular , Xilema/citología , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/genética
2.
EMBO J ; 43(9): 1843-1869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565948

RESUMEN

The RNA-silencing effector ARGONAUTE10 influences cell fate in plant shoot and floral meristems. ARGONAUTE10 also accumulates in the root apical meristem (RAM), yet its function(s) therein remain elusive. Here, we show that ARGONAUTE10 is expressed in the root cell initials where it controls overall RAM activity and length. ARGONAUTE10 is also expressed in the stele, where post-transcriptional regulation confines it to the root tip's pro-vascular region. There, variations in ARGONAUTE10 levels modulate metaxylem-vs-protoxylem specification. Both ARGONAUTE10 functions entail its selective, high-affinity binding to mobile miR165/166 transcribed in the neighboring endodermis. ARGONAUTE10-bound miR165/166 is degraded, likely via SMALL-RNA-DEGRADING-NUCLEASES1/2, thus reducing miR165/166 ability to silence, via ARGONAUTE1, the transcripts of cell fate-influencing transcription factors. These include PHABULOSA (PHB), which controls meristem activity in the initials and xylem differentiation in the pro-vasculature. During early germination, PHB transcription increases while dynamic, spatially-restricted transcriptional and post-transcriptional mechanisms reduce and confine ARGONAUTE10 accumulation to the provascular cells surrounding the newly-forming xylem axis. Adequate miR165/166 concentrations are thereby channeled along the ARGONAUTE10-deficient yet ARGONAUTE1-proficient axis. Consequently, inversely-correlated miR165/166 and PHB gradients form preferentially along the axis despite ubiquitous PHB transcription and widespread miR165/166 delivery inside the whole vascular cylinder.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Regulación de la Expresión Génica de las Plantas , Meristema , MicroARNs , Raíces de Plantas , Xilema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , MicroARNs/metabolismo , MicroARNs/genética , Meristema/metabolismo , Meristema/crecimiento & desarrollo , Meristema/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética
3.
Plant Cell ; 36(5): 1806-1828, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339982

RESUMEN

Wood formation involves consecutive developmental steps, including cell division of vascular cambium, xylem cell expansion, secondary cell wall (SCW) deposition, and programmed cell death. In this study, we identified PagMYB31 as a coordinator regulating these processes in Populus alba × Populus glandulosa and built a PagMYB31-mediated transcriptional regulatory network. PagMYB31 mutation caused fewer layers of cambial cells, larger fusiform initials, ray initials, vessels, fiber and ray cells, and enhanced xylem cell SCW thickening, showing that PagMYB31 positively regulates cambial cell proliferation and negatively regulates xylem cell expansion and SCW biosynthesis. PagMYB31 repressed xylem cell expansion and SCW thickening through directly inhibiting wall-modifying enzyme genes and the transcription factor genes that activate the whole SCW biosynthetic program, respectively. In cambium, PagMYB31 could promote cambial activity through TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/PHLOEM INTERCALATED WITH XYLEM (PXY) signaling by directly regulating CLAVATA3/ESR-RELATED (CLE) genes, and it could also directly activate WUSCHEL HOMEOBOX RELATED4 (PagWOX4), forming a feedforward regulation. We also observed that PagMYB31 could either promote cell proliferation through the MYB31-MYB72-WOX4 module or inhibit cambial activity through the MYB31-MYB72-VASCULAR CAMBIUM-RELATED MADS2 (VCM2)/PIN-FORMED5 (PIN5) modules, suggesting its role in maintaining the homeostasis of vascular cambium. PagMYB31 could be a potential target to manipulate different developmental stages of wood formation.


Asunto(s)
Cámbium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Factores de Transcripción , Xilema , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Xilema/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pared Celular/metabolismo , Proliferación Celular , Madera/crecimiento & desarrollo , Madera/metabolismo , Madera/genética
4.
Proc Natl Acad Sci U S A ; 121(28): e2402514121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959034

RESUMEN

Leaves of flowering plants are characterized by diverse venation patterns. Patterning begins with the selection of vein-forming procambial initial cells from within the ground meristem of a developing leaf, a process which is considered to be auxin-dependent, and continues until veins are anatomically differentiated with functional xylem and phloem. At present, the mechanisms responsible for leaf venation patterning are primarily characterized in the model eudicot Arabidopsis thaliana which displays a reticulate venation network. However, evidence suggests that vein development may proceed via a different mechanism in monocot leaves where venation patterning is parallel. Here, we employed Molecular Cartography, a multiplexed in situ hybridization technique, to analyze the spatiotemporal localization of a subset of auxin-related genes and candidate regulators of vein patterning in maize leaves. We show how different combinations of auxin influx and efflux transporters are recruited during leaf and vein specification and how major and minor vein ranks develop with distinct identities. The localization of the procambial marker PIN1a and the spatial arrangement of procambial initial cells that give rise to major and minor vein ranks further suggests that vein spacing is prepatterned across the medio-lateral leaf axis prior to accumulation of the PIN1a auxin transporter. In contrast, patterning in the adaxial-abaxial axis occurs progressively, with markers of xylem and phloem gradually becoming polarized as differentiation proceeds. Collectively, our data suggest that both lineage- and position-based mechanisms may underpin vein patterning in maize leaves.


Asunto(s)
Hibridación in Situ , Ácidos Indolacéticos , Hojas de la Planta , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/citología , Xilema/genética
5.
Plant J ; 119(2): 960-981, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761363

RESUMEN

Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Poliamino Oxidasa , Solanum lycopersicum , Xilema , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo , Xilema/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Plantas Modificadas Genéticamente , Desarrollo de la Planta/genética , Poliaminas/metabolismo , Espermina/análogos & derivados
6.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38198215

RESUMEN

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Pyrus , Factores de Transcripción , Xilema , Xilema/metabolismo , Xilema/genética , Pyrus/genética , Pyrus/metabolismo , Pyrus/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética
7.
Plant Biotechnol J ; 22(8): 2201-2215, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38492213

RESUMEN

Wood formation, which occurs mainly through secondary xylem development, is important not only for supplying raw material for the 'ligno-chemical' industry but also for driving the storage of carbon. However, the complex mechanisms underlying the promotion of xylem formation remain to be elucidated. Here, we found that overexpression of Auxin-Regulated Gene involved in Organ Size (ARGOS) in hybrid poplar 84 K (Populus alba × Populus tremula var. glandulosa) enlarged organ size. In particular, PagARGOS promoted secondary growth of stems with increased xylem formation. To gain further insight into how PagARGOS regulates xylem development, we further carried out yeast two-hybrid screening and identified that the auxin transporter WALLS ARE THIN1 (WAT1) interacts with PagARGOS. Overexpression of PagARGOS up-regulated WAT1, activating a downstream auxin response promoting cambial cell division and xylem differentiation for wood formation. Moreover, overexpressing PagARGOS caused not only higher wood yield but also lower lignin content compared with wild-type controls. PagARGOS is therefore a potential candidate gene for engineering fast-growing and low-lignin trees with improved biomass production.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Proteínas de Plantas , Populus , Madera , Xilema , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Lignina/metabolismo , Madera/crecimiento & desarrollo , Madera/genética , Madera/metabolismo , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Ácidos Indolacéticos/metabolismo
8.
Plant Cell Environ ; 47(7): 2640-2659, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38558078

RESUMEN

Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.


Asunto(s)
Pared Celular , Chenopodiaceae , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Xilema , Tolerancia a la Sal/genética , Xilema/fisiología , Xilema/genética , Xilema/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/fisiología , Pared Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tamaño de la Célula , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Oryza/genética , Oryza/fisiología , Oryza/crecimiento & desarrollo , Genes de Plantas , Diferenciación Celular/genética , Lignina/metabolismo
9.
Plant Cell Environ ; 47(6): 2044-2057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38392920

RESUMEN

Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.


Asunto(s)
Antocianinas , Criptocromos , Populus , Madera , Antocianinas/biosíntesis , Antocianinas/metabolismo , Luz Azul , Criptocromos/metabolismo , Criptocromos/genética , Regulación de la Expresión Génica de las Plantas , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Madera/metabolismo , Madera/crecimiento & desarrollo , Xilema/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo
10.
Ann Bot ; 133(7): 953-968, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38366549

RESUMEN

BACKGROUND AND AIMS: Secondary cell wall (SCW) thickening is a major cellular developmental stage determining wood structure and properties. Although the molecular regulation of cell wall deposition during tracheary element differentiation has been well established in primary growth systems, less is known about the gene regulatory processes involved in the multi-layered SCW thickening of mature trees. METHODS: Using third-generation [long-read single-molecule real-time (SMRT)] and second-generation [short-read sequencing by synthesis (SBS)] sequencing methods, we established a Pinus bungeana transcriptome resource with comprehensive functional and structural annotation for the first time. Using these approaches, we generated high spatial resolution datasets for the vascular cambium, xylem expansion regions, early SCW thickening, late SCW thickening and mature xylem tissues of 71-year-old Pinus bungeana trees. KEY RESULTS: A total of 79 390 non-redundant transcripts, 31 808 long non-coding RNAs and 5147 transcription factors were annotated and quantified in different xylem tissues at all growth and differentiation stages. Furthermore, using this high spatial resolution dataset, we established a comprehensive transcriptomic profile and found that members of the NAC, WRKY, SUS, CESA and LAC gene families are major players in early SCW formation in tracheids, whereas members of the MYB and LBD transcription factor families are highly expressed during late SCW thickening. CONCLUSIONS: Our results provide new molecular insights into the regulation of multi-layered SCW thickening in conifers. The high spatial resolution datasets provided can serve as important gene resources for improving softwoods.


Asunto(s)
Pared Celular , Pinus , Xilema , Pared Celular/genética , Pared Celular/metabolismo , Pinus/genética , Pinus/crecimiento & desarrollo , Xilema/genética , Xilema/crecimiento & desarrollo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Madera/genética , Madera/crecimiento & desarrollo , Madera/anatomía & histología
11.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126014

RESUMEN

Stem strength plays a crucial role in the growth and development of plants, as well as in their flowering and fruiting. It not only impacts the lodging resistance of crops, but also influences the ornamental value of ornamental plants. Stem development is closely linked to stem strength; however, the roles of the SPL transcription factors in the stem development of herbaceous peony (Paeonia lactiflora Pall.) are not yet fully elucidated. In this study, we obtained and cloned the full-length sequence of PlSPL14, encoding 1085 amino acids. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of PlSPL14 gradually increased with the stem development of P. lactiflora and was significantly expressed in vascular bundles. Subsequently, utilizing the techniques of virus-induced gene silencing (VIGS) and heterologous overexpression in tobacco (Nicotiana tabacum L.), it was determined that PlSPL14-silenced P. lactiflora had a thinner xylem thickness, a decreased stem diameter, and weakened stem strength, while PlSPL14-overexpressing tobacco resulted in a thicker xylem thickness, an increased stem diameter, and enhanced stem strength. Further screening of the interacting proteins of PlSPL14 using a yeast two-hybrid (Y2H) assay revealed an interactive relationship between PlSPL14 and PlSLR1 protein, which acts as a negative regulator of gibberellin (GA). Additionally, the expression level of PlSLR1 gradually decreased during the stem development of P. lactiflora. The above results suggest that PlSPL14 may play a positive regulatory role in stem development and act in the xylem, making it a potential candidate gene for enhancing stem straightness in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Paeonia , Proteínas de Plantas , Tallos de la Planta , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Paeonia/genética , Paeonia/crecimiento & desarrollo , Paeonia/metabolismo , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Xilema/genética , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Clonación Molecular , Filogenia
12.
J Integr Plant Biol ; 66(8): 1658-1674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031878

RESUMEN

The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription - quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector-reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.


Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Madera , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Pared Celular/metabolismo , Madera/crecimiento & desarrollo , Madera/genética , Madera/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Xilema/metabolismo , Xilema/genética , Lignina/biosíntesis , Lignina/metabolismo , Plantas Modificadas Genéticamente , Genes de Plantas , Celulosa/biosíntesis , Celulosa/metabolismo
13.
Genome Biol ; 25(1): 85, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570851

RESUMEN

Cell type annotation and lineage construction are two of the most critical tasks conducted in the analyses of single-cell RNA sequencing (scRNA-seq). Four recent scRNA-seq studies of differentiating xylem propose four models on differentiating xylem development in Populus. The differences are mostly caused by the use of different strategies for cell type annotation and subsequent lineage interpretation. Here, we emphasize the necessity of using in situ transcriptomes and anatomical information to construct the most plausible xylem development model.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Perfilación de la Expresión Génica , Xilema/genética , Xilema/crecimiento & desarrollo , Transcriptoma , Análisis de la Célula Individual
14.
Plant Genome ; 17(2): e20446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38528365

RESUMEN

MicroRNAs (miRNAs) and DNA methylation are both vital regulators of gene expression. DNA methylation can affect the transcription of miRNAs, just like coding genes, through methylating the CpG islands in the gene regions of miRNAs. Although previous studies have shown that DNA methylation and miRNAs can each be involved in the process of wood formation, the relationship between the two has been relatively little studied in plant wood formation. Studies have shown that the second internode (IN2) (from top to bottom) of 3-month-old poplar trees can represent the primary stage of poplar stem development and IN8 can represent the secondary stage. There were also significant differences in DNA methylation patterns and miRNA expression patterns obtained from PS and SS. In this study, we first interactively analyzed methylation and miRNA sequencing data to identify 43 differentially expressed miRNAs regulated by differential methylation from the primary stage and secondary stage, which were found to be involved in multiple biological processes related to wood formation by enrichment analysis. In addition, six miRNA/target gene modules were finally identified as potentially involved in secondary xylem development of poplar stems through degradome sequencing and functional analysis. In conclusion, this study provides important reference information on the mechanism of interaction between different regulatory pathways of wood formation.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica de las Plantas , MicroARNs , Tallos de la Planta , Populus , Xilema , Populus/genética , Populus/crecimiento & desarrollo , MicroARNs/genética , Xilema/genética , Xilema/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , ARN de Planta/genética , Madera/genética
15.
Plant Sci ; 344: 112083, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588982

RESUMEN

Due to the extended generation cycle of trees, the breeding process for forest trees tends to be time-consuming. Genetic engineering has emerged as a viable approach to expedite the genetic breeding of forest trees. However, current genetic engineering techniques employed in forest trees often utilize continuous expression promoters such as CaMV 35S, which may result in unintended consequences by introducing genes into non-target tissues. Therefore, it is imperative to develop specific promoters for forest trees to facilitate targeted and precise design and breeding. In this study, we utilized single-cell RNA-Seq data and co-expression network analysis during wood formation to identify three vascular tissue-specific genes in poplar, PP2-A10, PXY, and VNS07, which are expressed in the phloem, cambium/expanding xylem, and mature xylem, respectively. Subsequently, we cloned the promoters of these three genes from '84K' poplar and constructed them into a vector containing the eyGFPuv visual selection marker, along with the 35S mini enhancer to drive GUS gene expression. Transgenic poplars expressing the ProPagPP2-A10::GUS, ProPagPXY::GUS, and ProPagVNS07::GUS constructs were obtained. To further elucidate the tissue specificity of these promoters, we employed qPCR, histochemical staining, and GUS enzyme activity. Our findings not only establish a solid foundation for the future utilization of these promoters to precisely express of specific functional genes in stems but also provide a novel perspective for the modular breeding of forest trees.


Asunto(s)
Populus , Regiones Promotoras Genéticas , Populus/genética , Populus/metabolismo , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Xilema/genética , Xilema/metabolismo , Floema/genética , Floema/metabolismo , Genes de Plantas
16.
Plant Physiol Biochem ; 214: 108924, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991593

RESUMEN

LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.


Asunto(s)
Diferenciación Celular , Pared Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Factores de Transcripción , Xilema , Populus/genética , Populus/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Xilema/metabolismo , Xilema/genética , Plantas Modificadas Genéticamente/metabolismo
17.
Plant Sci ; 344: 112106, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663480

RESUMEN

PXY (Phloem intercalated with xylem) is a receptor kinase required for directional cell division during the development of plant vascular tissue. Drought stress usually affects plant stem cell division and differentiation thereby limiting plant growth. However, the role of PXY in cambial activities of woody plants under drought stress is unclear. In this study, we analyzed the biological functions of two PXY genes (PagPXYa and PagPXYb) in poplar growth and development and in response to drought stress in a hybrid poplar (Populus alba × P. glandulosa, '84K'). Expression analysis indicated that PagPXYs, similar to their orthologs PtrPXYs in Populus trichocarpa, are mainly expressed in the stem vascular system, and related to drought. Interestingly, overexpression of PagPXYa and PagPXYb in poplar did not have a significant impact on the growth status of transgenic plants under normal condition. However, when treated with 8 % PEG6000 or 100 mM H2O2, PagPXYa and PagPXYb overexpressing lines consistently exhibited more cambium cell layers, fewer xylem cell layers, and enhanced drought tolerance compared to the non-transgenic control '84K'. In addition, PagPXYs can alleviate the damage caused by H2O2 to the cambium under drought stress, thereby maintaining the cambial division activity of poplar under drought stress, indicating that PagPXYs play an important role in plant resistance to drought stress. This study provides a new insight for further research on the balance of growth and drought tolerance in forest trees.


Asunto(s)
Cámbium , Sequías , Proteínas de Plantas , Populus , Especies Reactivas de Oxígeno , Populus/genética , Populus/fisiología , Populus/metabolismo , Populus/crecimiento & desarrollo , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/fisiología , Cámbium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente/genética , Homeostasis , Regulación de la Expresión Génica de las Plantas , Xilema/metabolismo , Xilema/fisiología , Xilema/genética , Estrés Fisiológico , Resistencia a la Sequía
18.
Plant Sci ; 346: 112159, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901779

RESUMEN

Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.


Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Lignina , Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Pared Celular/metabolismo , Lignina/metabolismo , Lignina/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/metabolismo , Xilema/genética , Madera/metabolismo , Madera/genética , Madera/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Dedos de Zinc CYS2-HIS2 , Dedos de Zinc
19.
Tree Physiol ; 44(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39030690

RESUMEN

Tension wood is a specialized xylem tissue associated with gravitropism in angiosperm trees. However, few regulators of tension wood formation have been identified. The molecular mechanisms underpinning tension wood formation remain elusive. Here, we report that a Populus KNOTTED-like homeobox gene, PagKNAT2/6b, is involved in tension wood formation and gravity response. Transgenic poplar plants overexpressing PagKNAT2/6b displayed more sensitive gravitropism than controls, as indicated by increased stem curvature. Microscopic examination revealed greater abundance of fibre cells with a gelatinous cell wall layer (G-layer) and asymmetric growth of secondary xylem in PagKNAT2/6b overexpression lines. Conversely, PagKNAT2/6b dominant repression plants exhibited decreased tension wood formation and reduced response to gravity stimulation. Moreover, sensitivity to gravity stimulation showed a negative relationship with development stage. Expression of genes related to growth and senescence was affected in PagKNAT2/6b transgenic plants. More importantly, transcription activation and electrophoretic mobility shift assays suggested that PagKNAT2/6b promotes the expression of cytokinin metabolism genes. Consistently, cytokinin content was increased in PagKNAT2/6b overexpression plants. Therefore, PagKNAT2/6b is involved in gravitropism and tension wood formation, likely via modulation of cytokinin metabolism.


Asunto(s)
Citocininas , Gravitropismo , Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Madera , Gravitropismo/fisiología , Citocininas/metabolismo , Populus/genética , Populus/crecimiento & desarrollo , Populus/fisiología , Populus/metabolismo , Madera/crecimiento & desarrollo , Madera/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Xilema/metabolismo , Xilema/fisiología , Xilema/crecimiento & desarrollo , Xilema/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
20.
Int J Biol Macromol ; 268(Pt 1): 131559, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631576

RESUMEN

Expansins are important plant cell wall proteins. They can loosen and soften the cell walls and lead to wall extension and cell expansion. To investigate their role in wood formation and fiber elongation, the PagEXPA1 that highly expressed in cell differentiation and expansion tissues was cloned from 84K poplar (Populus alba × P. glandulosa). The subcellular localization showed that PagEXPA1 located in the cell wall and it was highly expressed in primary stems and young leaves. Compared with non-transgenic 84K poplar, overexpression of PagEXPA1 can promote plant-growth, lignification, and fiber cell elongation, while PagEXPA1 Cas9-editing mutant lines exhibited the opposite phenotype. Transcriptome analysis revealed that DEGs were mainly enriched in some important processes, which are associated with cell wall formation and cellulose synthesis. The protein interaction prediction and expression analysis showed that PagCDKB2:1 and PagEXPA1 might have an interaction relationship. The luciferase complementary assay and bimolecular fluorescence complementary assay validated that PagEXPA1 can combined with PagCDKB2;1. So they promoted the expansion of xylem vascular tissues and the development of poplar though participating in the regulation of cell division and differentiation by programming the cell-cycle. It provides good foundation for molecular breeding of fast-growing and high-quality poplar varieties.


Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Plantas Modificadas Genéticamente , Perfilación de la Expresión Génica , Xilema/metabolismo , Xilema/genética , Desarrollo de la Planta/genética , Madera/genética , Madera/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA