Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.157.263
Filtrar
Más filtros

Filtros aplicados
Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Synth Syst Biotechnol ; 10(1): 58-67, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39247801

RESUMEN

Vitamin A is a micronutrient critical for versatile biological functions and has been widely used in the food, cosmetics, pharmaceutical, and nutraceutical industries. Synthetic biology and metabolic engineering enable microbes, especially the model organism Saccharomyces cerevisiae (generally recognised as safe) to possess great potential for the production of vitamin A. Herein, we first generated a vitamin A-producing strain by mining ß-carotene 15,15'-mono(di)oxygenase from different sources and identified two isoenzymes Mbblh and Ssbco with comparable catalytic properties but different catalytic mechanisms. Combinational expression of isoenzymes increased the flux from ß-carotene to vitamin A metabolism. To modulate the vitamin A components, retinol dehydrogenase 12 from Homo sapiens was introduced to achieve more than 90 % retinol purity using shake flask fermentation. Overexpressing POS5Δ17 enhanced the reduced nicotinamide adenine dinucleotide phosphate pool, and the titer of vitamin A was elevated by almost 46 %. Multi-copy integration of the key rate-limiting step gene Mbblh further improved the synthesis of vitamin A. Consequently, the titer of vitamin A in the strain harbouring the Ura3 marker was increased to 588 mg/L at the shake-flask level. Eventually, the highest reported titer of 5.21 g/L vitamin A in S. cerevisiae was achieved in a 1-L bioreactor. This study unlocked the potential of S. cerevisiae for synthesising vitamin A in a sustainable and economical way, laying the foundation for the commercial-scale production of bio-based vitamin A.

2.
Neural Regen Res ; 20(7): 1883-1899, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254548

RESUMEN

Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied. However, their inability to cross the blood-brain barrier hampers the clinical translation of these therapeutic strategies. Liposomes are nanoparticles composed of lipid bilayers, which can effectively encapsulate drugs and improve drug delivery across the blood-brain barrier and into brain tissue through their targeting and permeability. Therefore, they can potentially treat traumatic and nontraumatic central nervous system diseases. In this review, we outlined the common properties and preparation methods of liposomes, including thin-film hydration, reverse-phase evaporation, solvent injection techniques, detergent removal methods, and microfluidics techniques. Afterwards, we comprehensively discussed the current applications of liposomes in central nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and brain tumors. Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials. Additionally, their application as drug delivery systems in clinical practice faces challenges such as drug stability, targeting efficiency, and safety. Therefore, we proposed development strategies related to liposomes to further promote their development in neurological disease research.

3.
Neural Regen Res ; 20(7): 1919-1929, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254549

RESUMEN

Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles. After spinal cord injury, stepping over an obstacle becomes challenging. Stepping over an obstacle requires sensorimotor transformations in several structures of the brain, including the parietal cortex, premotor cortex, and motor cortex. Sensory information and planning are transformed into motor commands, which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory, coordinate the limbs, and maintain balance. After spinal cord injury, bidirectional communication between the brain and spinal cord is disrupted and animals, including humans, fail to voluntarily modify limb trajectory to step over an obstacle. Therefore, in this review, we discuss the neuromechanical control of stepping over an obstacle, why it fails after spinal cord injury, and how it recovers to a certain extent.

4.
Neural Regen Res ; 20(7): 1971-1980, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254551

RESUMEN

In eukaryotic cells, organelles in the secretory, lysosomal, and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking, which is the process of transporting the cargo of proteins, lipids, and other molecules to appropriate compartments via transport vesicles or intermediates. These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain (RAB) protein family, which is the largest subfamily of the RAS superfamily. Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases, including neurological disorders and neurodegenerative diseases. Therefore, it is important to understand the physiological and pathological roles of RAB proteins in brain function. RAB35, a member of the RAB family, is an evolutionarily conserved protein in metazoans. A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis, endocytic recycling, actin bundling, and cell migration. RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles. We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function. These mice exhibited defects in anxiety-related behaviors and spatial memory. Strikingly, RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development, and thereby for normal hippocampal lamination. In contrast, layer formation in the cerebral cortex occurred superficially, even in the absence of RAB35, suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development. Recent studies have suggested an association between RAB35 and neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In this review, we provide an overview of the current understanding of subcellular functions of RAB35. We also provide insights into the physiological role of RAB35 in mammalian brain development and function, and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.

5.
Neural Regen Res ; 20(7): 1989-1990, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254552
7.
Neural Regen Res ; 20(7): 1864-1882, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254547

RESUMEN

Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.

10.
Neural Regen Res ; 20(7): 1944-1956, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254550

RESUMEN

The blood-brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation. It tightly modulates the ion transport and nutrient influx, while restricting the entry of harmful factors, and selectively limiting the migration of immune cells, thereby maintaining brain homeostasis. Despite the well-established association between blood-brain barrier disruption and most neurodegenerative/neuroinflammatory diseases, much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown. Moreover, the role of blood-brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood. This review aims to revisit this concept of "blood-brain barrier breakdown," delving into the most controversial aspects, prevalent challenges, and knowledge gaps concerning the lack of blood-brain barrier integrity. By moving beyond the oversimplistic dichotomy of an "open"/"bad" or a "closed"/"good" barrier, our objective is to provide a more comprehensive insight into blood-brain barrier dynamics, to identify novel targets and/or therapeutic approaches aimed at mitigating blood-brain barrier dysfunction. Furthermore, in this review, we advocate for considering the diverse time- and location-dependent alterations in the blood-brain barrier, which go beyond tight-junction disruption or brain endothelial cell breakdown, illustrated through the dynamics of ischemic stroke as a case study. Through this exploration, we seek to underscore the complexity of blood-brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.

12.
15.
Neural Regen Res ; 20(7): 1999-2000, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254557
17.
Neural Regen Res ; 20(7): 2015-2028, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254564

RESUMEN

JOURNAL/nrgr/04.03/01300535-202507000-00024/figure1/v/2024-09-09T124005Z/r/image-tiff Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination. Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage. Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation, and plays an important role in the pathological process of ischemic stroke. However, there are few studies on oligodendrocyte progenitor cell ferroptosis. We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia. Bioinformatics analysis suggested that perilipin-2 (PLIN2) was involved in oligodendrocyte progenitor cell ferroptosis. PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation. For further investigation, we established a mouse model of cerebral ischemia/reperfusion. We found significant myelin damage after cerebral ischemia, as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area. The ferroptosis inhibitor, ferrostatin-1, rescued oligodendrocyte progenitor cell death and subsequent myelin injury. We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells. Plin2 knockdown rescued demyelination and improved neurological deficits. Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.

18.
Neural Regen Res ; 20(7): 2053-2067, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254566

RESUMEN

JOURNAL/nrgr/04.03/01300535-202507000-00027/figure1/v/2024-09-09T124005Z/r/image-tiff An imbalance in adenosine-mediated signaling, particularly the increased A2AR-mediated signaling, plays a role in the pathogenesis of Parkinson's disease. Existing therapeutic approaches fail to alter disease progression, demonstrating the need for novel approaches in PD. Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease. However, the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown. The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling. Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test. Immunoblot, quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen. Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals. A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen. Treatment with intermittent theta burst stimulation began 7 days after the lesion, coinciding with the onset of motor symptoms. After treatment with prolonged intermittent theta burst stimulation, complete motor recovery was observed. This improvement was accompanied by downregulation of the eN/CD73-A2AR pathway and a return to physiological levels of A1R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation. Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A1R and elevated the expression of A2AR. Intermittent theta burst stimulation reversed these effects by restoring the abundances of A1R and A2AR to control levels. The shift in ARs expression likely restored the balance between dopamine-adenosine signaling, ultimately leading to the recovery of motor control.

20.
Neural Regen Res ; 20(7): 2068-2083, 2025 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254567

RESUMEN

JOURNAL/nrgr/04.03/01300535-202507000-00028/figure1/v/2024-09-09T124005Z/r/image-tiff Alzheimer's disease is characterized by deposition of amyloid-ß, which forms extracellular neuritic plaques, and accumulation of hyperphosphorylated tau, which aggregates to form intraneuronal neurofibrillary tangles, in the brain. The NLRP3 inflammasome may play a role in the transition from amyloid-ß deposition to tau phosphorylation and aggregation. Because NLRP3 is primarily found in brain microglia, and tau is predominantly located in neurons, it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines. Here, we found that neurons also express NLRP3 in vitro and in vivo, and that neuronal NLRP3 regulates tau phosphorylation. Using biochemical methods, we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons. In primary neurons and the neuroblastoma cell line Neuro2A, FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-ß is present. In the brains of aged wild-type mice and a mouse model of Alzheimer's disease, FUBP3 expression was markedly increased in cortical neurons. Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses. We also found that FUBP3 trimmed the 5' end of DNA fragments that it bound, implying that FUBP3 functions in stress-induced responses. These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-ß-to-phospho-tau transition than microglial NLRP3, and that amyloid-ß fundamentally alters the regulatory mechanism of NLRP3 expression in neurons. Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice, FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA