Using expression profiling data to identify human microRNA targets.
Nat Methods
; 4(12): 1045-9, 2007 Dec.
Article
en En
| MEDLINE
| ID: mdl-18026111
We demonstrate that paired expression profiles of microRNAs (miRNAs) and mRNAs can be used to identify functional miRNA-target relationships with high precision. We used a Bayesian data analysis algorithm, GenMiR++, to identify a network of 1,597 high-confidence target predictions for 104 human miRNAs, which was supported by RNA expression data across 88 tissues and cell types, sequence complementarity and comparative genomics data. We experimentally verified our predictions by investigating the result of let-7b downregulation in retinoblastoma using quantitative reverse transcriptase (RT)-PCR and microarray profiling: some of our verified let-7b targets include CDC25A and BCL7A. Compared to sequence-based predictions, our high-scoring GenMiR++ predictions had much more consistent Gene Ontology annotations and were more accurate predictors of which mRNA levels respond to changes in let-7b levels.
Buscar en Google
Banco de datos:
MEDLINE
Asunto principal:
Análisis de Secuencia de ARN
/
Marcación de Gen
/
Análisis de Secuencia por Matrices de Oligonucleótidos
/
Perfilación de la Expresión Génica
/
MicroARNs
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Nat Methods
Asunto de la revista:
TECNICAS E PROCEDIMENTOS DE LABORATORIO
Año:
2007
Tipo del documento:
Article
País de afiliación:
Canadá