Your browser doesn't support javascript.
loading
Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull.
Geurtzen, Karina; Knopf, Franziska; Wehner, Daniel; Huitema, Leonie F A; Schulte-Merker, Stefan; Weidinger, Gilbert.
Afiliación
  • Geurtzen K; Biotechnology Center and CRTD, Technische Universität Dresden, 01307 Dresden, Germany.
  • Knopf F; Biotechnology Center and CRTD, Technische Universität Dresden, 01307 Dresden, Germany Kennedy Institute of Rheumatology, Oxford OX3 7FY, UK.
  • Wehner D; Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany.
  • Huitema LF; Hubrecht Institut-KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands.
  • Schulte-Merker S; Hubrecht Institut-KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands EZO, WUR, 6709 PG Wageningen, The Netherlands Institute of Cardiovascular Organogenesis and Regeneration, University of Münster, 48149 Münster, Germany.
  • Weidinger G; Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany gilbert.weidinger@uni-ulm.de.
Development ; 141(11): 2225-34, 2014 Jun.
Article en En | MEDLINE | ID: mdl-24821985
ABSTRACT
Zebrafish have an unlimited capacity to regenerate bone after fin amputation. In this process, mature osteoblasts dedifferentiate to osteogenic precursor cells and thus represent an important source of newly forming bone. By contrast, differentiated osteoblasts do not appear to contribute to repair of bone injuries in mammals; rather, osteoblasts form anew from mesenchymal stem cells. This raises the question whether osteoblast dedifferentiation is specific to appendage regeneration, a special feature of the lepidotrichia bone of the fish fin, or a process found more generally in fish bone. Here, we show that dedifferentiation of mature osteoblasts is not restricted to fin regeneration after amputation, but also occurs during repair of zebrafish fin fractures and skull injuries. In both models, mature osteoblasts surrounding the injury downregulate the expression of differentiation markers, upregulate markers of the pre-osteoblast state and become proliferative. Making use of photoconvertible Kaede protein as well as Cre-driven genetic fate mapping, we show that osteoblasts migrate to the site of injury to replace damaged tissue. Our findings suggest a fundamental role for osteoblast dedifferentiation in reparative bone formation in fish and indicate that adult fish osteoblasts display elevated cellular plasticity compared with mammalian bone-forming cells.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Osteoblastos / Cráneo / Huesos / Diferenciación Celular / Aletas de Animales Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Development Asunto de la revista: BIOLOGIA / EMBRIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Osteoblastos / Cráneo / Huesos / Diferenciación Celular / Aletas de Animales Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Development Asunto de la revista: BIOLOGIA / EMBRIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Alemania