Your browser doesn't support javascript.
loading
A functional circuit model of interaural time difference processing.
McColgan, Thomas; Shah, Sahil; Köppl, Christine; Carr, Catherine; Wagner, Hermann.
Afiliación
  • McColgan T; Institute for Biology II, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen, Aachen, Germany; Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany;
  • Shah S; Department of Biology, University of Maryland, College Park, Maryland;
  • Köppl C; Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science and Department of Neuroscience School of Medicine and Health Science Carl von Ossietzky University Oldenburg, Oldenburg, Germany;
  • Carr C; Department of Biology, University of Maryland, College Park, Maryland; and.
  • Wagner H; Institute for Biology II, RWTH Aachen, Aachen, Germany wagner@bio2.rwth-aachen.de.
J Neurophysiol ; 112(11): 2850-64, 2014 Dec 01.
Article en En | MEDLINE | ID: mdl-25185809
ABSTRACT
Inputs from the two sides of the brain interact to create maps of interaural time difference (ITD) in the nucleus laminaris of birds. How inputs from each side are matched with high temporal precision in ITD-sensitive circuits is unknown, given the differences in input path lengths from each side. To understand this problem in birds, we modeled the geometry of the input axons and their corresponding conduction velocities and latencies. Consistent with existing physiological data, we assumed a common latency up to the border of nucleus laminaris. We analyzed two biological implementations of the model, the single ITD map in chickens and the multiple maps of ITD in barn owls. For binaural inputs, since ipsi- and contralateral initial common latencies were very similar, we could restrict adaptive regulation of conduction velocity to within the nucleus. Other model applications include the simultaneous derivation of multiple conduction velocities from one set of measurements and the demonstration that contours with the same ITD cannot be parallel to the border of nucleus laminaris in the owl. Physiological tests of the predictions of the model demonstrate its validity and robustness. This model may have relevance not only for auditory processing but also for other computational tasks that require adaptive regulation of conduction velocity.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tiempo de Reacción / Localización de Sonidos / Tronco Encefálico / Modelos Neurológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neurophysiol Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tiempo de Reacción / Localización de Sonidos / Tronco Encefálico / Modelos Neurológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neurophysiol Año: 2014 Tipo del documento: Article