Your browser doesn't support javascript.
loading
Continuous non-cell autonomous reprogramming to generate retinal ganglion cells for glaucomatous neuropathy.
Parameswaran, Sowmya; Dravid, Shashank Manohar; Teotia, Pooja; Krishnamoorthy, Raghu R; Qiu, Fang; Toris, Carol; Morrison, John; Ahmad, Iqbal.
Afiliación
  • Parameswaran S; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.
  • Dravid SM; Department of Pharmacology, Creighton University, Omaha, Nebraska, USA.
  • Teotia P; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.
  • Krishnamoorthy RR; Department of Cell Biology and Anatomy, UNT Health Science Center, Fort Worth, Texas, USA.
  • Qiu F; Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA.
  • Toris C; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.
  • Morrison J; The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA.
  • Ahmad I; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.
Stem Cells ; 33(6): 1743-58, 2015 Jun.
Article en En | MEDLINE | ID: mdl-25753398
ABSTRACT
Glaucoma, where the retinal ganglion cells (RGCs) carrying the visual signals from the retina to the visual centers in the brain are progressively lost, is the most common cause of irreversible blindness. The management approaches, whether surgical, pharmacological, or neuroprotective do not reverse the degenerative changes. The stem cell approach to replace dead RGCs is a viable option but currently faces several barriers, such as the lack of a renewable, safe, and ethical source of RGCs that are functional and could establish contacts with bona fide targets. To address these barriers, we have derived RGCs from the easily accessible adult limbal cells, reprogrammed to pluripotency by a non-nucleic acid approach, thus circumventing the risk of insertional mutagenesis. The generation of RGCs from the induced pluripotent stem (iPS) cells, also accomplished non-cell autonomously, recapitulated the developmental mechanism, ensuring the predictability and stability of the acquired phenotype, comparable to that of native RGCs at biochemical, molecular, and functional levels. More importantly, the induced RGCs expressed axonal guidance molecules and demonstrated the potential to establish contacts with specific targets. Furthermore, when transplanted in the rat model of ocular hypertension, these cells incorporated into the host RGC layer and expressed RGC-specific markers. Transplantation of these cells in immune-deficient mice did not produce tumors. Together, our results posit retinal progenitors generated from non-nucleic acid-derived iPS cells as a safe and robust source of RGCs for replacing dead RGCs in glaucoma.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Células Ganglionares de la Retina / Glaucoma / Hipertensión Ocular / Enfermedades del Sistema Nervioso Periférico / Reprogramación Celular / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Stem Cells Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Células Ganglionares de la Retina / Glaucoma / Hipertensión Ocular / Enfermedades del Sistema Nervioso Periférico / Reprogramación Celular / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Stem Cells Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos