Your browser doesn't support javascript.
loading
Activation of weak IR fundamentals of two species of astrochemical interest in the T(d) point group--the importance of amorphous ices.
Hudson, R L; Gerakines, P A; Loeffler, M J.
Afiliación
  • Hudson RL; Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. reggie.hudson@nasa.gov.
Phys Chem Chem Phys ; 17(19): 12545-52, 2015 May 21.
Article en En | MEDLINE | ID: mdl-25899062
New measurements are reported on the weak ν1 and ν2 fundamentals of frozen CH4, a solid of considerable astrochemical interest. Infrared spectra in the ν1 and ν2 regions are presented for three CH4-ice phases at 10-30 K with new absorption coefficients and band strengths to quantify the results. In contrast to the situation with the two crystalline phases of CH4, both ν1 and ν2 were seen clearly in methane's amorphous phase. To support our CH4 work, we also present new results for NH4SH, a component of Jupiter's atmosphere, showing that the ν2 vibration of NH4(+) undergoes a dramatic loss of intensity during an amorphous-to-crystalline phase transition, but is regenerated in equally-dramatic fashion by radiation-induced amorphization of the sample. Results are compared to work recently published in this journal and elsewhere.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos