Your browser doesn't support javascript.
loading
Image reconstruction using a gradient impulse response model for trajectory prediction.
Vannesjo, S Johanna; Graedel, Nadine N; Kasper, Lars; Gross, Simon; Busch, Julia; Haeberlin, Maximilian; Barmet, Christoph; Pruessmann, Klaas P.
Afiliación
  • Vannesjo SJ; Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
  • Graedel NN; Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
  • Kasper L; Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
  • Gross S; Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
  • Busch J; Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
  • Haeberlin M; Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
  • Barmet C; Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
  • Pruessmann KP; Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
Magn Reson Med ; 76(1): 45-58, 2016 07.
Article en En | MEDLINE | ID: mdl-26211410
ABSTRACT

PURPOSE:

Gradient imperfections remain a challenge in MRI, especially for sequences relying on long imaging readouts. This work aims to explore image reconstruction based on k-space trajectories predicted by an impulse response model of the gradient system. THEORY AND

METHODS:

Gradient characterization was performed twice with 3 years interval on a commercial 3 Tesla (T) system. The measured gradient impulse response functions were used to predict actual k-space trajectories for single-shot echo-planar imaging (EPI), spiral and variable-speed EPI sequences. Image reconstruction based on the predicted trajectories was performed for phantom and in vivo data. Resulting images were compared with reconstructions based on concurrent field monitoring, separate trajectory measurements, and nominal trajectories.

RESULTS:

Image reconstruction using model-based trajectories yielded high-quality images, comparable to using separate trajectory measurements. Compared with using nominal trajectories, it strongly reduced ghosting, blurring, and geometric distortion. Equivalent image quality was obtained with the recent characterization and that performed 3 years prior.

CONCLUSION:

Model-based trajectory prediction enables high-quality image reconstruction for technically challenging sequences such as single-shot EPI and spiral imaging. It thus holds great promise for fast structural imaging and advanced neuroimaging techniques, including functional MRI, diffusion tensor imaging, and arterial spin labeling. The method can be based on a one-time system characterization as demonstrated by successful use of 3-year-old calibration data. Magn Reson Med 7645-58, 2016. © 2015 Wiley Periodicals, Inc.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Imagen por Resonancia Magnética / Interpretación de Imagen Asistida por Computador / Aumento de la Imagen / Artefactos / Modelos Teóricos Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2016 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Imagen por Resonancia Magnética / Interpretación de Imagen Asistida por Computador / Aumento de la Imagen / Artefactos / Modelos Teóricos Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2016 Tipo del documento: Article País de afiliación: Suiza