Your browser doesn't support javascript.
loading
Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection.
Park, Minsu; Ha, Hyun Dong; Kim, Yong Tae; Jung, Jae Hwan; Kim, Shin-Hyun; Kim, Do Hyun; Seo, Tae Seok.
Afiliación
  • Park M; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
  • Ha HD; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
  • Kim YT; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
  • Jung JH; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
  • Kim SH; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
  • Kim DH; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
  • Seo TS; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
Anal Chem ; 87(21): 10969-75, 2015 11 03.
Article en En | MEDLINE | ID: mdl-26456631
ABSTRACT
A novel trace lead ion (Pb(2+)) detection platform by combining a microfluidic sample pretreatment device with a DNA aptamer linked photoluminescent graphene oxide quantum dot (GOQD) sensor was proposed. The multilayered microdevice included a microchamber which was packed with cation exchange resins for preconcentrating metal ions. The sample loading and recovery were automatically actuated by a peristaltic polydimethylsiloxane micropump with a flow rate of 84 µL/min. Effects of the micropump actuation time, metal ion concentration, pH, and the volumes of the sample and eluent on the metal ion capture and preconcentration efficiency were investigated on a chip. The Pb(2+) samples whose concentrations ranged from 0.48 nM to 1.2 µM were successfully recovered with a preconcentration factor value between 4 and 5. Then, the preconcentrated metal ions were quantitatively analyzed with a DNA aptamer modified GOQD. The DNA aptamer on the GOQD specifically captured the target Pb(2+) which can induce electron transfer from GOQD to Pb(2+) upon UV irradiation, thereby resulting in the fluorescence quenching of the GOQD. The disturbing effect of foreign anions on the Pb(2+) detection and the spiked Pb(2+) real samples were also analyzed. The proposed GOQD metal ion sensor exhibited highly sensitive Pb(2+) detection with a detection limit of 0.64 nM and a dynamic range from 1 to 1000 nM. The on-chip preconcentration of the trace metal ions from a large-volume sample followed by the metal ion detection by the fluorescent GOQD sensor can provide an advanced platform for on-site water pollution screening.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Puntos Cuánticos / Dispositivos Laboratorio en un Chip / Grafito / Plomo Tipo de estudio: Diagnostic_studies Idioma: En Revista: Anal Chem Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Puntos Cuánticos / Dispositivos Laboratorio en un Chip / Grafito / Plomo Tipo de estudio: Diagnostic_studies Idioma: En Revista: Anal Chem Año: 2015 Tipo del documento: Article