Your browser doesn't support javascript.
loading
Alkali-Controlled C-H Cleavage or N-C Bond Formation by N2-Derived Iron Nitrides and Imides.
MacLeod, K Cory; Menges, Fabian S; McWilliams, Sean F; Craig, Stephanie M; Mercado, Brandon Q; Johnson, Mark A; Holland, Patrick L.
Afiliación
  • MacLeod KC; Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States.
  • Menges FS; Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States.
  • McWilliams SF; Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States.
  • Craig SM; Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States.
  • Mercado BQ; Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States.
  • Johnson MA; Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States.
  • Holland PL; Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States.
J Am Chem Soc ; 138(35): 11185-91, 2016 09 07.
Article en En | MEDLINE | ID: mdl-27571271
ABSTRACT
Formation of N-H and N-C bonds from functionalization of N2 is a potential route to utilization of this abundant resource. One of the key challenges is to make the products of N2 activation reactive enough to undergo further reactions under mild conditions. This paper explores the strategy of "alkali control," where the presence of an alkali metal cation enables the reduction of N2 under mild conditions, and then chelation of the alkali metal cation uncovers a highly reactive species that can break benzylic C-H bonds to give new N-H and Fe-C bonds. The ability to "turn on" this C-H activation pathway with 18-crown-6 is demonstrated with three different N2 reduction products of N2 cleavage in an iron-potassium system. The alkali control strategy can also turn on an intermolecular reaction of an N2-derived nitride with methyl tosylate that gives a new N-C bond. Since the transient K(+)-free intermediate reacts with this electrophile but not with the weak C-H bonds in 1,4-cyclohexadiene, it is proposed that the C-H cleavage occurs by a deprotonation mechanism. The combined results demonstrate that a K(+) ion can mask the latent nucleophilicity of N2-derived nitride and imide ligands within a trimetallic iron system and points a way toward control over N2 functionalization.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Compuestos Organometálicos / Carbono / Álcalis / Hidrógeno / Imidas / Hierro / Nitrógeno Idioma: En Revista: J Am Chem Soc Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Compuestos Organometálicos / Carbono / Álcalis / Hidrógeno / Imidas / Hierro / Nitrógeno Idioma: En Revista: J Am Chem Soc Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos