Your browser doesn't support javascript.
loading
Identification of genes differentially expressed in menstrual breakdown and repair.
Paiva, Premila; Lockhart, Michelle G; Girling, Jane E; Olshansky, Moshe; Woodrow, Nicole; Marino, Jennifer L; Hickey, Martha; Rogers, Peter A W.
Afiliación
  • Paiva P; Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia ppaiva@unimelb.edu.au.
  • Lockhart MG; Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia.
  • Girling JE; Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia.
  • Olshansky M; Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia.
  • Woodrow N; Department of Microbiology, Monash University, Wellington Road and Blackburn Road, Clayton, VIC 3800, Australia.
  • Marino JL; Pauline Gandel Imaging Centre, Royal Women's Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia.
  • Hickey M; Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia.
  • Rogers PA; Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia.
Mol Hum Reprod ; 22(12): 898-912, 2016 12.
Article en En | MEDLINE | ID: mdl-27609758
ABSTRACT
STUDY QUESTION Does the changing molecular profile of the endometrium during menstruation correlate with the histological profile of menstruation. SUMMARY ANSWER We identified several genes not previously associated with menstruation; on Day 2 of menstruation (early-menstruation), processes related to inflammation are predominantly up-regulated and on Day 4 (late-menstruation), the endometrium is predominantly repairing and regenerating. WHAT IS KNOWN ALREADY Menstruation is induced by progesterone withdrawal at the end of the menstrual cycle and involves endometrial tissue breakdown, regeneration and repair. Perturbations in the regulation of menstruation may result in menstrual disorders including abnormal uterine bleeding. STUDY DESIGN, SIZE DURATION Endometrial samples were collected by Pipelle biopsy on Days 2 (n = 9), 3 (n = 9) or 4 (n = 6) of menstruation. PARTICIPANTS/MATERIALS, SETTING,

METHODS:

RNA was extracted from endometrial biopsies and analysed by genome wide expression Illumina Sentrix Human HT12 arrays. Data were analysed using 'Remove Unwanted Variation-inverse (RUV-inv)'. Ingenuity pathway analysis (IPA) and the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 were used to identify canonical pathways, upstream regulators and functional gene clusters enriched between Days 2, 3 and 4 of menstruation. Selected individual genes were validated by quantitative PCR. MAIN RESULTS AND THE ROLE OF CHANCE Overall, 1753 genes were differentially expressed in one or more comparisons. Significant canonical pathways, gene clusters and upstream regulators enriched during menstrual bleeding included those associated with immune cell trafficking, inflammation, cell cycle regulation, extracellular remodelling and the complement and coagulation cascade. We provide the first evidence for a role for glutathione-mediated detoxification (glutathione-S-transferase mu 1 and 2; GSTM1 and GSTM2) during menstruation. The largest number of differentially expressed genes was between Days 2 and 4 of menstruation (n = 1176). We identified several genes not previously associated with menstruation including lipopolysaccharide binding protein, serpin peptidase inhibitor, clade B (ovalbumin), member 3 (SERPINB3) and -4 (SERPINB4), interleukin-17C (IL17C), V-set domain containing T-cell activation inhibitor 1 (VTCN1), proliferating cell nuclear antigen factor (KIAA0101/PAF), trefoil factor 3 (TFF3), laminin alpha 2 (LAMA2) and serine peptidase inhibitor, Kazal type 1 (SPINK1). Genes related to inflammatory processes were up-regulated on Day 2 (early-menstruation), and those associated with endometrial repair and regeneration were up-regulated on Day 4 (late-menstruation). LIMITATIONS, REASONS FOR CAUTION Participants presented with a variety of endometrial pathologies related to bleeding status and other menstrual characteristics. These variations may also have influenced the menstrual process. WIDER IMPLICATIONS OF THE

FINDINGS:

The temporal molecular profile of menstruation presented in this study identifies a number of genes not previously associated with the menstrual process. Our findings provide valuable insight into the menstrual process and may present novel targets for therapeutic intervention in cases of endometrial dysfunction. LARGE SCALE DATA All microarray data have been deposited in the public data repository Gene Expression Omnibus (GSE86003). STUDY FUNDING AND COMPETING INTERESTS Funding for this work was provided by a National Health and Medical Research Council of Australia (NHMRC) Project Grant APP1008553 to M.H., P.R. and J.G. M.H. is supported by an NHMRC Practitioner Fellowship. P.P. is supported by a NHMRC Early Career Fellowship. The authors have no conflict of interest to declare.
Asunto(s)
Palabras clave
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Regulación de la Expresión Génica / Endometrio / Ciclo Menstrual / Menstruación Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Female / Humans Idioma: En Revista: Mol Hum Reprod Asunto de la revista: BIOLOGIA MOLECULAR / MEDICINA REPRODUTIVA Año: 2016 Tipo del documento: Article País de afiliación: Australia
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Regulación de la Expresión Génica / Endometrio / Ciclo Menstrual / Menstruación Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Female / Humans Idioma: En Revista: Mol Hum Reprod Asunto de la revista: BIOLOGIA MOLECULAR / MEDICINA REPRODUTIVA Año: 2016 Tipo del documento: Article País de afiliación: Australia