Your browser doesn't support javascript.
loading
PDMP, a ceramide analogue, acts as an inhibitor of mTORC1 by inducing its translocation from lysosome to endoplasmic reticulum.
Ode, Takashi; Podyma-Inoue, Katarzyna A; Terasawa, Kazue; Inokuchi, Jin-Ichi; Kobayashi, Toshihide; Watabe, Tetsuro; Izumi, Yuichi; Hara-Yokoyama, Miki.
Afiliación
  • Ode T; Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Research Fellow of the Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
  • Podyma-Inoue KA; Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
  • Terasawa K; Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
  • Inokuchi JI; Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
  • Kobayashi T; Lipid Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; CNRS, UMR 7213, University of Strasbourg, 67401 Illkirch, France.
  • Watabe T; Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
  • Izumi Y; Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
  • Hara-Yokoyama M; Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan. Electronic address: m.yokoyama.bch@tmd.ac.jp.
Exp Cell Res ; 350(1): 103-114, 2017 Jan 01.
Article en En | MEDLINE | ID: mdl-27865938
Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth, metabolism, and cell differentiation. Recent studies have revealed that the recruitment of mTORC1 to lysosomes is essential for its activation. The ceramide analogue 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), a well known glycosphingolipid synthesis inhibitor, also affects the structures and functions of various organelles, including lysosomes and endoplasmic reticulum (ER). We investigated whether PDMP regulates the mTORC1 activity through its effects on organellar behavior. PDMP induced the translocation of mTORC1 from late endosomes/lysosomes, leading to the dissociation of mTORC1 from its activator Rheb in MC3T3-E1 cells. Surprisingly, we found mTORC1 translocation to the ER upon PDMP treatment. This effect of PDMP was independent of its action as the inhibitor, since two stereoisomers of PDMP, with and without the inhibitor activity, showed essentially the same effect. We confirmed that PDMP inhibits the mTORC1 activity based on the decrease in the phosphorylation of ribosomal S6 kinase, a downstream target of mTORC1, and the increase in LC3 puncta, reflecting autophagosome formation. Furthermore, PDMP inhibited the mTORC1-dependent osteoblastic cell proliferation and differentiation of MC3T3-E1 cells. Accordingly, the present results reveal a novel mechanism of PDMP, which inhibits the mTORC1 activity by inducing the translocation of mTOR from lysosomes to the ER.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Autofagia / Morfolinas / Complejos Multiproteicos / Retículo Endoplásmico / Serina-Treonina Quinasas TOR / Lisosomas Límite: Animals Idioma: En Revista: Exp Cell Res Año: 2017 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Autofagia / Morfolinas / Complejos Multiproteicos / Retículo Endoplásmico / Serina-Treonina Quinasas TOR / Lisosomas Límite: Animals Idioma: En Revista: Exp Cell Res Año: 2017 Tipo del documento: Article País de afiliación: Japón