Your browser doesn't support javascript.
loading
Nanocavity Integrated van der Waals Heterostructure Light-Emitting Tunneling Diode.
Liu, Chang-Hua; Clark, Genevieve; Fryett, Taylor; Wu, Sanfeng; Zheng, Jiajiu; Hatami, Fariba; Xu, Xiaodong; Majumdar, Arka.
Afiliación
  • Hatami F; Department of Physics, Humboldt University , D-12489 Berlin, Germany.
Nano Lett ; 17(1): 200-205, 2017 01 11.
Article en En | MEDLINE | ID: mdl-27936763
ABSTRACT
Developing a nanoscale, integrable, and electrically pumped single mode light source is an essential step toward on-chip optical information technologies and sensors. Here, we demonstrate nanocavity enhanced electroluminescence in van der Waals heterostructures (vdWhs) at room temperature. The vertically assembled light-emitting device uses graphene/boron nitride as top and bottom tunneling contacts and monolayer WSe2 as an active light emitter. By integrating a photonic crystal cavity on top of the vdWh, we observe the electroluminescence is locally enhanced (>4 times) by the nanocavity. The emission at the cavity resonance is single mode and highly linearly polarized (84%) along the cavity mode. By applying voltage pulses, we demonstrate direct modulation of this single mode electroluminescence at a speed of ∼1 MHz, which is faster than most of the planar optoelectronics based on transition metal chalcogenides (TMDCs). Our work shows that cavity integrated vdWhs present a promising nanoscale optoelectronic platform.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2017 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2017 Tipo del documento: Article