Your browser doesn't support javascript.
loading
Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNaV1.7.
Agwa, Akello J; Lawrence, Nicole; Deplazes, Evelyne; Cheneval, Olivier; Chen, Rachel M; Craik, David J; Schroeder, Christina I; Henriques, Sónia T.
Afiliación
  • Agwa AJ; Institute for Molecular Bioscience, The University of Queensland, Qld 4072, Australia.
  • Lawrence N; Institute for Molecular Bioscience, The University of Queensland, Qld 4072, Australia.
  • Deplazes E; Institute for Molecular Bioscience, The University of Queensland, Qld 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Qld 4072, Australia.
  • Cheneval O; Institute for Molecular Bioscience, The University of Queensland, Qld 4072, Australia.
  • Chen RM; Institute for Molecular Bioscience, The University of Queensland, Qld 4072, Australia.
  • Craik DJ; Institute for Molecular Bioscience, The University of Queensland, Qld 4072, Australia.
  • Schroeder CI; Institute for Molecular Bioscience, The University of Queensland, Qld 4072, Australia. Electronic address: c.schroeder@imb.uq.edu.au.
  • Henriques ST; Institute for Molecular Bioscience, The University of Queensland, Qld 4072, Australia. Electronic address: s.henriques@uq.edu.au.
Biochim Biophys Acta Biomembr ; 1859(5): 835-844, 2017 May.
Article en En | MEDLINE | ID: mdl-28115115
ABSTRACT
The human voltage-gated sodium channel sub-type 1.7 (hNaV1.7) is emerging as an attractive target for the development of potent and sub-type selective novel analgesics with increased potency and fewer side effects than existing therapeutics. HwTx-IV, a spider derived peptide toxin, inhibits hNaV1.7 with high potency and is therefore of great interest as an analgesic lead. In the current study we examined whether engineering a HwTx-IV analogue with increased ability to bind to lipid membranes would improve its inhibitory potency at hNaV1.7. This hypothesis was explored by comparing HwTx-IV and two analogues [E1PyrE]HwTx-IV (mHwTx-IV) and [E1G,E4G,F6W,Y30W]HwTx-IV (gHwTx-IV) on their membrane-binding affinity and hNaV1.7 inhibitory potency using a range of biophysical techniques including computational analysis, NMR spectroscopy, surface plasmon resonance, and fluorescence spectroscopy. HwTx-IV and mHwTx-IV exhibited weak affinity for lipid membranes, whereas gHwTx-IV showed improved affinity for the model membranes studied. In addition, activity assays using SH-SY5Y neuroblastoma cells expressing hNaV1.7 showed that gHwTx-IV has increased activity at hNaV1.7 compared to HwTx-IV. Based on these results we hypothesize that an increase in the affinity of HwTx-IV for lipid membranes is accompanied by improved inhibitory potency at hNaV1.7 and that increasing the affinity of gating modifier toxins to lipid bilayers is a strategy that may be useful for improving their potency at hNaV1.7.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Venenos de Araña / Bloqueadores de los Canales de Sodio / Canal de Sodio Activado por Voltaje NAV1.7 / Membrana Dobles de Lípidos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biochim Biophys Acta Biomembr Año: 2017 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Venenos de Araña / Bloqueadores de los Canales de Sodio / Canal de Sodio Activado por Voltaje NAV1.7 / Membrana Dobles de Lípidos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biochim Biophys Acta Biomembr Año: 2017 Tipo del documento: Article País de afiliación: Australia