Your browser doesn't support javascript.
loading
Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells.
Middelkamp, Sjors; van Heesch, Sebastiaan; Braat, A Koen; de Ligt, Joep; van Iterson, Maarten; Simonis, Marieke; van Roosmalen, Markus J; Kelder, Martijn J E; Kruisselbrink, Evelien; Hochstenbach, Ron; Verbeek, Nienke E; Ippel, Elly F; Adolfs, Youri; Pasterkamp, R Jeroen; Kloosterman, Wigard P; Kuijk, Ewart W; Cuppen, Edwin.
Afiliación
  • Middelkamp S; Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
  • van Heesch S; Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
  • Braat AK; Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Strasse 10, Berlin, 13125, Germany.
  • de Ligt J; Department of Cell Biology, Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, 3584CT, The Netherlands.
  • van Iterson M; Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
  • Simonis M; Department of Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333ZC, The Netherlands.
  • van Roosmalen MJ; Cergentis B.V., Yalelaan 62, Utrecht, 3584CM, The Netherlands.
  • Kelder MJ; Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
  • Kruisselbrink E; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
  • Hochstenbach R; Department of Pediatric Pulmonology & Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Lundlaan 6, Utrecht, 3584EA, The Netherlands.
  • Verbeek NE; Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
  • Ippel EF; Department of Genetics, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584EA, The Netherlands.
  • Adolfs Y; Department of Genetics, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584EA, The Netherlands.
  • Pasterkamp RJ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
  • Kloosterman WP; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
  • Kuijk EW; Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
  • Cuppen E; Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands. E.W.Kuijk-3@umcutrecht.nl.
Genome Med ; 9(1): 9, 2017 01 26.
Article en En | MEDLINE | ID: mdl-28126037
BACKGROUND: Germline chromothripsis causes complex genomic rearrangements that are likely to affect multiple genes and their regulatory contexts. The contribution of individual rearrangements and affected genes to the phenotypes of patients with complex germline genomic rearrangements is generally unknown. METHODS: To dissect the impact of germline chromothripsis in a relevant developmental context, we performed trio-based RNA expression analysis on blood cells, induced pluripotent stem cells (iPSCs), and iPSC-derived neuronal cells from a patient with de novo germline chromothripsis and both healthy parents. In addition, Hi-C and 4C-seq experiments were performed to determine the effects of the genomic rearrangements on transcription regulation of genes in the proximity of the breakpoint junctions. RESULTS: Sixty-seven genes are located within 1 Mb of the complex chromothripsis rearrangements involving 17 breakpoints on four chromosomes. We find that three of these genes (FOXP1, DPYD, and TWIST1) are both associated with developmental disorders and differentially expressed in the patient. Interestingly, the effect on TWIST1 expression was exclusively detectable in the patient's iPSC-derived neuronal cells, stressing the need for studying developmental disorders in the biologically relevant context. Chromosome conformation capture analyses show that TWIST1 lost genomic interactions with several enhancers due to the chromothripsis event, which likely led to deregulation of TWIST1 expression and contributed to the patient's craniosynostosis phenotype. CONCLUSIONS: We demonstrate that a combination of patient-derived iPSC differentiation and trio-based molecular profiling is a powerful approach to improve the interpretation of pathogenic complex genomic rearrangements. Here we have applied this approach to identify misexpression of TWIST1, FOXP1, and DPYD as key contributors to the complex congenital phenotype resulting from germline chromothripsis rearrangements.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Mutación de Línea Germinal / Transcriptoma / Cromotripsis Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Genome Med Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Mutación de Línea Germinal / Transcriptoma / Cromotripsis Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Genome Med Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos